跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張志聰
Chih-Tsung Chang
論文名稱: 前額視覺誘發電位擷取方法
A novel method for the detection of frontal VEP signals
指導教授: 李柏磊
Po-Lei Lee
口試委員:
學位類別: 博士
Doctor
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 66
中文關鍵詞: 梳狀濾波器穩態視覺誘發電位閃光視覺誘發電位相位編碼
外文關鍵詞: Comb filter, Steady-state visual evoked potential, Flash Visual Evoked Potential, Phase encoding
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究創新研發一種電位方式,將電極放置在前額擷取EEG訊號,並且加入梳狀濾波
    器在相位編碼中,處理訊號裡的雜訊。此方法是在前額葉(Fpz)上放置電極以擷取視覺誘
    發電位(VEP)信號,取代傳統測量方式中使用的枕葉(Oz)區擷取視覺誘發電位。我們將廣
    泛的應用在視覺誘發電位的方法,包括穩態視覺誘發電位(SSVEP)、閃光視覺誘發電位
    (FVEP)和相位編碼(Phase)來研究,並且比較枕葉(Oz)和前額葉(Fpz)位置的腦波信號。
    在傳統擷取腦波枕葉(Oz)位置的方式,實際操作中會受到人的頭髮干擾,且還需額外的
    電極來擷取眼動訊號(EOG)並且過濾它。我們提出的方法可以有效地獲得視覺誘發電位和
    眼動訊號,並且不需要像在枕葉(Oz)位置需要除去大量頭髮的前置作業準備,我們還可
    以減少擷腦波訊號的電極數量。在前額電極擷取腦波訊號可能是設計腦人機介面的一個
    重大突破。


    This research represents a new electrode positioning on the frontal lobe to collect EEG
    signals. Through this we also incorporated comb filter to filter signal noise upon signal
    collection. The novel method examine visually evoked potential (VEP) by placing an electrode
    on the frontal lobe (Fpz), on the other hand, the traditional method involves placing the
    electrode at the mid-occipital location (Oz). We used three different widely used VEP
    methods, namely steady-state VEP (SSVEP), flash VEP (FVEP) and Phase and analyze the
    brain wave signals from both the Oz and Fpz location. Traditional Oz location of signal
    processing involves an extra electrode as well as hair interference. Our frontal novel electrode
    placement not only trigger the VEP signal, it also process the EOG signal at the same time
    without preparation of hair and addition electrodes. The frontal lobe of positioning electrode to
    analyze the VEP signal is a remarkable breakthrough in the BCI system application.

    List of Contents 中文摘要 ...... i Abstract ...... ii 致謝 .......iii List of Figures …………………………………vi List of Tables ……………………………………viii Chapter 1 Introduction .............. 1 1.1 Motivation and Background ……………………1 1.2 Brain computer interface (BCI) ………2 1.3 Visual stimulator ………………………………… 6 1.4 Types of brain waves …………………………………8 Chapter 2 Fpz and Oz the visual evoked potential of Electrode to Detect EEG Signals ………………………………….....12 2.1 Subjects and Tasks………….….…12 2.3 Transmission of the VEP throughout the brain ………13 2.4 EEG Extraction Method ……….…………………………………….…..……….15 2.5 Overview of the experiment set up ………………………………….17 Chapter 3 EEG Signal Transduction Pathway and Analytical Methods ………………18 3.1 VEP signals ……………………18 3.2 Fvep ………………………………………20 3.3 SSVEP ……..…………………..…25 3.4 Phase …………………….……………29 3.5 The correct rate of Fpz and Oz …...…………………32 3.6 Results ……..………………………………………………..…..…………….…34 Chapter 4. Using Comb Filter to Improve Phase Signal Extraction …………..……...…35 4.1 Feedback digital comb filter with variable delay………………………35 4.2 Comb filter and signal phase……………………….39 4.3 Choosing α and flickering frequency ……42 4.4 Results ……………………………………………………46 Chapter 5 Conclusion ……………………………47 Reference …………………………………………………………49 Publication List ………………………………………53

    Reference
    [1] G.P. Pires, “Biosignal Classification for Human Interface with Devices and Surrounding
    Environment”, Biosignal classification for human interface with devices and surrounding
    environment. 2011 10316/20315
    [2] P.W. Dorota, “Visual-evoked potentials in patients with brain circulatory problems”, Int J
    Neurosci. 2014;(10):264–269.
    [3] G. Schalk, D.J. McFarland, T. Hinterberger, T. Hinterberger, N. Birbaumer, and
    Jonathan, “A general-purpose brain-computer interface (BCI) system”, IEEE Transactions on
    Biomedical Engineering. 2004:51(6):1034-1043
    [4] G. Hacioglu, A. Agar, G .Ozkaya, P. Yargicoglu and S. Gumuslu, “The effect of different
    hypertension models on visual evoked potentials”, Int J Neurosci. 2009;(7):1321–1335.
    [5] C.T. Chang, Lee, P.L and E.H. Lin, “Variable delay digital comb filter extraction of weak
    phase signals for SSVEP”, Biomed Signal Proc Control. 2017;31:211–216.
    [6] P.L. Lee, J.J. Sie, Y.J. Liu, C.H. Wu, M.H. Lee, C.H. Shu, P.H. Li, C.W. Sun and K.K,
    “Shyu,An SSVEP-actuated brain computer interface using phase-tagged flickeringsequences:
    a cursor system”, Ann Biomed. Eng. 38 (7) (2010) 2383–2397.
    [7] Y.M. Chi, Y.T. Wang, C .Maier, T.P. Jung and G, “Cauwenberghs. Dry and noncontact
    EEG sensors for mobile brain-computer interface”, IEEE Trans Neural Syst Rehab Eng.
    2012;20(2):228–235.
    [8] Y.M.M. Jahani, “A frequency domain proof for the equivalence of the maximally flat FIR
    fractional delay filter and the Lagrange interpolator”, Elsevier. 2011;21(1):13–16.
    [9] T.M. Vaughan, D.J. McFarland, G. Schalk, W.A. Samacki, D.J. and E. W. Krusienski,
    “The wadsworth BCI research and development program: at home with BCI”, IEEE Trans
    Neural Syst Rehab Eng. 2006;14 (2):229–233.
    [10] Y.T. Wang, Y. Wang , C.K. Cheng and T.P. Jung, “Measuring steady-state visual evoked
    potential from non-hair-bearing areas”, IEEE Eng Med Biol Soc. 2012;(4):1806–1809.
    [11] R. Sitaram, A. Caria and N, “Birbaumer. Hemodynamic braincomputer interfaces for
    communication and rehabilitation”, Neural Netw. 2009;22:1320–1328.
    [12] D.J. Creel, “Visually evoked potentials”, The Organization of the Retina and Visual
    System. Webvision; 2016. http://web vision.med.utah.edu/book/electrophysiology/visually-ev
    oked-potentials/
    [13] S.P. Kelly, E.C. Lalor, R.B. Reilly and J.J. Foxe, “Visual spatial attention tracking using
    high density SSVEP data for independent brain-computer communication”, IEEE Trans Neural
    Syst Rehab Eng. 2005;13(2):172–178.
    [14] G.R. Muller-Putz and G. Pfurtscheller, “Control of an electrical prosthesis with an
    SSVEP-based BCI”, IEEE Trans Biomed Eng. 2008;55(1):361–364.
    [15] O. Friman, I. Volosyak and A. Graser, “Multiple channel detection of steady-state visual
    evoked potentials for brain-computer interfaces”. IEEE Trans Biomed Eng. 2007;54(4):742–750.
    [16] R. Ortner, B. Allison, G. Korisek, H. Gaggl and P. Gert, “An SSVEP BCI to control a
    hand orthosis for persons with tetraplegia”, IEEE Trans Neural Syst Rehab Eng. 2011;19(1):1–
    5.
    [17] Z. Wu, “The difference of SSVEP resulted by different pulse duty-cycle”, IEEE Conf
    Commun Circuits Syst. 2009; 605–607.
    [18] Y.T Wang, Y. Wang, C.K. Cheng and T.P. Jung, “Measuring steady-state visual evoked
    potentials from non-hair-bearing areas”, In: 34th Annual International Conference of the IEEE
    EMBS; San Diego, CA. 2012.
    [19] Y.T. Wang, M. Nakanishi, Y. Wang, C.K. Cheng and T.P. Jung, “An online
    braincomputer interface based on SSVEPs measured from nonhair-bearing areas”, IEEE Trans
    Neural Syst Rehab Eng. 2016;25(1):14–21.
    [20] C.S. Wei, Y.T. Wang, C.T. Lin and T.P. Jung, “Toward non-hair-bearing brain-computer
    interfaces for neurocognitive lapse detection”. IEEE Eng Med Biol Soc. 2015:25–29.
    [21] C.H. Wu, P.L. Lee, Y.T. Wu, C.M. Cheng, T.C. Yeh, L.T. Ho, M.S. Chang and J.C.
    Hsieh, “ICA-based analysis of movement- related modulation on beta activity of single-trial
    MEG measurement using spatial and temporal templates”. J Med Biol Eng. 2003;28:155–159.
    [22] C.H. Wu, P.L. Lee, C.H. Shu, M.T. Lo, C.Y. Chang and J.C. Hsieh, “Empirical mode
    decomposition based approach for inter-trial analysis of olfactory event-related potential features”, Chem Percept. 2012;5(3–4):280–291.
    [23] K.K. Shyu, P.L. Lee, Y.J. Liu and J.J. Sie, “Dual-frequency steady-state visual evoked
    potential for brain computer interface”, Neurosci Lett. 2010;483(1):28–31.
    [24] P.L. Lee, J.C. Hsieh, C.H. Wu,K.K, “Shyn and Y.T. Wu. Brain computer interface using
    flash onset and offset visual evoked potentials”, Clin Neurophysiol. 2007;119:605–616.
    [25] P.L. Lee, J.J. Sie, Y.J. Liu, M.H. Lee, C.H. Shu, P.H. Li, C.W. Sun and K.K. Shyn,
    “An SSVEP-actuated brain computer interface using phase-tagged flickering sequences: a
    cursor system”, Ann Biomed Eng. 2010;38(7):2383–2397.
    [26] L. Bi, J. Lian, k. Jie, R. Lai, Y. Liu, “A speed and direction-based cursor control
    systemwith P300 and SSVEP”, Biomedical Signal Processing and Control 14(2014)126–133.
    [27] H.Y. Wu, P.L. Lee, H.C. Chang, J.C, “Hsieh, Accounting for phase drifts inSSVEP-based
    BCIs by means of biphasic stimulation”, IEEE Trans. Biomed. Eng.58 (5) (2011) 1394–1402.
    [28] J.J. Sie, [Research on phase encoding visual stimulator of steady-state visual evoked
    potential]. National Central University,PhD Paper, 2014。
    [29] Y.J. Liu [Research on Dual-Frequency Steady-State Visual Evoked Potentials Induce
    System]. National Central University,PhD Paper, 2014。

    QR CODE
    :::