跳到主要內容

簡易檢索 / 詳目顯示

研究生: 周浩儒
Hao-ju Chou
論文名稱: 可作為染敏太陽能電池光敏染料之四嗪與噠嗪衍生物
Tetrazine- and Pyridazine-based D-A’-A Derivatives for Dye-sensitized Solar Cells
指導教授: 林建村
陳銘洲
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 117
中文關鍵詞: 染敏太陽能電池非金屬系有機光敏染料輔助電子受體四嗪噠嗪
外文關鍵詞: dye-sensitized solar cells, metal-free sensitizers, auxiliary acceptor, tetrazine, pyridazine
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於電子予體-輔助電子受體-電子受體型(D-A’-A;D = donor,A’ = auxiliary acceptor,A = anchoring acceptor)染料具有良好光捕捉效能 (light-harvesting efficiency)、較小的能階差 (bandgap)以及極佳的光穩定性 (photostability),本論文研究開發出一系列以此形式為主的HJ系列新型非金屬系有機染料,染料之共軛鏈中包含以兩側連接具有長碳鏈己基之噻吩的四嗪或者噠嗪 (bis(n-hexylthienyl)tetrazine or bis(n-hexylthienyl)pyridazine) 主體架構,以及在主體一端分別以三苯胺 (triphenylamine)、具有乙基己基取代之咔唑 (9-(2-ethylhexyl)-9H-carbazole)、噻吩二苯胺 (N,N-diphenylthiophene-2-amine)或具有己氧基取代之三苯胺 (4-(hexyloxy)-N-(4-(hexyloxy)phenyl)-N-phenylaniline) 作為電子予體,並在另一端以氰乙酸 (2-cyanoacetic acid)作為吸附錨基 (anchor)之電子受體。以光物理及電化學的量測結果可得知,具有四嗪或噠嗪輔助電子受體之HJ系列染料的吸收光範圍在300至600 nm間,而莫耳消光係數 (molar extinction coefficient)可高達約60,000 M-1 cm-1;最高填滿分子軌域 (HOMO)與最低未填滿分子軌域 (LUMO)則是分別落在-5.89至-5.43 eV以及-3.54至-3.16 eV之間,說明染料分子具有適合的電子注入 (injection)與再生能力 (regeneration)。由DSSC元件在AM 1.5 G模擬太陽光源的條件下量測結果得知,HJ系列染料的光電轉換效率 (light-to-electricity conversion efficiency)分布範圍於0.35至6.25%之間,如此落差可歸因於染料分子間的嚴重堆疊 (aggregation)以及電子被束縛 (electron trapping)於拉電子能力 (electron-withdrawing)太強的四嗪結構,此結果亦可以理論計算之結果印證。加入共吸附劑 (co-adsorbent)優化後的元件,其光電轉換效率可提升至6.31%,高達標準N719電池的76%。


    Sensitizers of D-A’-A type (D = donor; A’ = auxiliary acceptor; A = anchoring acceptor) have been widely investigated due to their good light-harvesting efficiency, low HOMO/LOMO gap, and excellent photostability. In this research, a series of new D-A’-A type sensitizers (HJ dyes) composed of a bis(n-hexylthienyl)tetrazine (TTz) or bis(n-hexylthienyl)pyridazine (TPz) core, an arylamine donor, such as triphenylamine, 9-(2-ethylhexyl)-9H-carbazole, N,N-diphenylthiophene-2-amine, and 4-(hexyloxy)-N-
    (4-(hexyloxy)phenyl)-N-phenylaniline as the electron donor entity and the 2-cyanoacetic acid as the acceptor as well as anchor have been synthesized for DSSC applications. These new dyes with tetrazine or pyridazine auxiliary acceptors have electronic absorption ranging from 300 to 600 nm, and the highest molar extinction coefficient reaching approximately 60,000 M-1cm-1. The HOMO (-5.89 to -5.43 eV) and LUMO (-3.54 to -3.16 eV) energy levels of the dyes calculated from the electrochemical and photophysical data assure favorable electron injection and regeneration. The light-to-electricity conversion efficiency of DSSC based on the HJ dyes is in a wide range of 0.35 to 6.25% under simulated AM 1.5 G illuminations. Low efficiencies of the cells can be attributed to the serious dye aggregation and the electron trapping effect, which is also supported by the theoretical calculation. Upon addition of CDCA as the co-adsorbent, the best performance has been slightly improved to 6.31%, which is of 76% of the N719-based standard DSSC.

    Table of Contents Abstract i 摘要 ii Table of Contents iv List of Figures vi List of Tables ix List of Appendixes x Chapter 1. Introduction 1 1.1 Forewords 1 1.1.1 Renewable Resources 1 1.1.2 Solar Energy 1 1.1.3 Solar Cells 3 1.2 Dye-sensitized Solar Cells 6 1.2.1 Developmental History 6 1.2.2 Composition and Working Principles 9 1.2.3 Performance Parameters 11 1.3 Research Project Review 12 1.3.1 Tetrazine and Pyridazine Applications 12 1.3.2 D-A’-A Metal-free Organic Sensitizers 17 1.3.3 HJ Dyes Design Strategies 22 Chapter 2. Experimental Details 25 2.1 General Procedures 25 2.1.1 Synthesis Operating Systems 25 2.1.2 Solvents and Reagents 25 2.1.3 Nuclear Magnetic Resonance Spectroscopy 27 2.1.4 Mass Spectroscopy 27 2.1.5 Elemental Analysis 28 2.1.6 Ultraviolet-Visible Spectroscopy 28 2.1.7 Fluorescence Emission Spectroscopy 29 2.1.8 Electrochemistry 29 2.1.9 Solar Energy Conversion Efficiency Measurement 29 2.2 Synthetic Steps for Tetrazine-based Dyes 30 2.2.1 Triphenylamine Donor-containing Dye HJ1 30 2.2.2 Carbazole Donor-containing Dye HJ2 35 2.2.3 Diphenylthiophenylamine Donor-containing Dye HJ3 38 2.2.4 Hexoxyl-substituent Triphenylamine Donor-containing Dye HJ4 43 2.3 Synthetic Steps for the Pyridazine-based Dye HJ5 46 Chapter 3. Results and Discussion 51 3.1 Synthesis Researches 51 3.1.1 Synthesis Strategies Overview 51 3.2.2 Reaction Mechanisms 55 3.2 Photophysical and Electrochemical Properties 58 3.2.1 Spectroscopic Analysis 58 3.2.2 Electrochemical Studies 63 3.3 DSSC Devices Performance 66 3.3.1 Photovoltaic Characteristics 66 3.3.2 Electrochemical Impedance Spectroscopy Analysis 70 3.4 Theoretical Approach 74 Chapter 4. Conclusions 82 References 83 Appendix 88

    References
    1. Nelson, J. (2003). The Physics of Solar Cells. London: Imperial College Press.
    2. Pagliaro, M.; Palmisano, G.; Ciriminna, R. (2008). Flexible Solar Cells. New York: John Wiley.
    3. Guechi, A.; Chegaar, M.; Aillerie, M. Energy Procedia 2013, 36, 714.
    4. Kallmans, H.; Pope, M. J. Chem. Phys. 1958, 30, 585.
    5. Green, M. A. et al. in “Proceeding of the 21st IEEE Photovoltaic Specialists Conference.” Orlando, USA: IEEE Publication, 1990.
    6. Chapin, D. M.; Fuller, C. S.; Pearson, G. L. J. Appl. Phys. 1954, 25, 676.
    7. Panasonic Press Release, April 10, 2014. Panasonic HIT® Solar Cell Achieves World’s highest Energy Conversion Efficiency of 25.6% at Research Level.
    8. Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E. D. Prog. Photovolt: Res. Appl. 2015, 23, 1.
    9. Matsui, T.; Sai, H.; Suezaki, T. Matsumoto, M.; Saito, K.; Yoshida, I.; Kondo, M. Development of highly stable and efficient amorphous silicon based solar cells. Proc. 28th European Photovoltaic Solar Energy Conference, 2013.
    10. Kayes, B. M.; Nie, H.; Twist, R.; Spruytte, S. G.; Reinhardt, F.; Kizilyalli, I. C.; Higashi, G. S. 27.6% conversion efficiency, a new record for single-junction solar cells under 1 sun illumination. Proceedings of the 37th IEEE Photovoltaic Specialists Conference, 2011.
    11. Amaresh, M.; Peter, B. Angew. Chem. Int. Ed. 2012, 51, 2020.
    12. (a) J. Am. Chem. Soc. 2014, 136, 3713. (b) Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I. Nano Lett. 2013, 13, 1764.
    13. Hurd, F.; Livingston, R. J. Phys. Chem. 1940, 44, 865.
    14. Tsubomura, H.; Matsumura, M.; Nomura, Y. and Amamiya, T. Nature 1976, 261, 402.
    15. Regan, B. O.; Grätzel, M. Nature 1991, 353, 737.
    16. (a) Nazeeruddin, M. K.; Kay, A.; Rodicio, L.; Humphry-Baker, R.; Müller, E.; Liska, P.; Vlachopoulos, N.; Grätzel, M. J. Am. Chem. Soc. 1993, 115, 6382. (b) Nazeeruddin, M. K.; DeAngelis, F.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Grätzel, M. J. Am. Chem. Soc. 2005, 127, 16835. (c) Nazeeruddin, M. K.; Péchy, P.; Renouard, T.; Zakeeruddin, S. M.; Humphry-Baker, R.; Comte, P.; Liska, P.; Cevey, L.; Costa, E.; Shklover, V.; Spiccia, L.; Deacon, G. B.; Bignozzi, C. A.; Grätzel, M. J. Am. Chem. Soc. 2001, 123, 1613.
    17. (a) Gao, F.; Wang, Y.;Shi, D.; Zhang, J.; Wang, M.;Jing, X.; Humphry-Baker, R.; Wang, P.; Zakeeruddin, M. S.; Grätzel, M. J. Am. Chem. Soc. 2008, 130, 10720. (b) Chen, C. Y.; Wang, M.; Li, J. Y.; Pootrakulchote, N.; Alibabaei, L.; Ngoc-le, C.; Decoppet, J. D.; Tsai, J. H.; Grätzel, C.; Wu, C. G.; Zakeeruddin, S. M.; Grätzel, M. ACS Nano 2009, 3, 3103.
    18. Yella, A.; Lee, H. W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E. W. G.; Yeh, C. Y.; Zakeeruddin, S. M.; Grätzel, M. Science 2011, 334, 629.
    19. Mathew, S.; Yella, A.; Gao, P.; Humphrey-Baker, R.; Curchod, B. F. E.; Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.; Nazeerruddin, M. K.; Grätzel, M. Nat. Chem. 2014, 6, 242.
    20. Yao, Z.; Zhang, M.; Wu, H.; Yang, L.; Li, R. and Wang, P. J. Am. Chem. Soc. 2015, 137, 3799.
    21. Ni, J.-S.; Kao, W.-S.; Chou, H.-J.; Lin, J. T. ChemSusChem 2015.
    22. Durrant, J. R.; Haque, S. A. Nat. Mater. 2003, 2, 362.
    23. Ferber, J.; Stangl, R.; Luther, J. Sol. Energy Mater. Sol. Cells 1998, 53, 29.
    24. Kaim, W. Coord. Chem. Rev. 2002, 230, 127.
    25. Audebert, P.; Sadki, S.; Miomandre, F.; Clavier, G.; Vernières, M.C.; Saoud, M.; Hapiot, P. New. J. Chem. 2004, 28, 387.
    26. Achelle, S.; Plé, N.; Turck, A. RSC Adv. 2011, 1, 364.
    27. Kurach, E.; Djurado, D.; Rimarčik, J.; Kornet, A.; Wlostowski, M.; Lukes, V.; Pécaut, J.; Zagorska, M.; Pron, A. Phys. Chem. Chem. Phys. 2011, 13, 2690.
    28. Choi, A. W.-T.; Tso, K. K.-S.; Yim, V. M.-W.; Liu, H.-W.; Lo, K. K.-W. Chem. Commun. 2015, 51, 3442.
    29. Hwang, D. K.; Dasari, R. R.; Fenoll, M.; Alain-Rizzo, V.; Dindar, A.; Shim, J. W.; Deb, N.; Fuentes-Hernandez, C.; Barlow, S.; Bucknall, D. G.; Pierre, A.; Marder, S. R.; Kippelen, B. Adv. Mater. 2012, 24, 4445.
    30. (a) Li, Z.; Ding, J.; Song, N.; Lu, J. and Tao, Y. J. Am. Chem. Soc. 2010, 132, 13160. (b) Li, Z.; Ding, J.; Song, N.; Du, X.; Zhou, J.; Lu, J.; Tao, Y. Chem. Mater. 2011, 23, 1977.
    31. Chen, Y.; Li, C.; Zhang, P.; Li, Y.; Yang, X.; Chen, L.; Tu, Y. Org. Electron. 2013, 14, 1424.
    32. Cho, H.-H.; Kang, T. E.; Kim, K.-H.; Kang, H.; Kim, H. J.; Kim, B. J. Macromolecules 2012, 45, 6415.
    33. (a) Wen, S.; Dong, Q.; Cheng, W.; Li, P.; Xu, B.; Tian. Sol. Energy Mater. Sol. Cells 2012, 100, 239. (b) Cheng, W.; Wu, Z.; Wen, S.; Xu, B.; Li, H.; Zhu, F.; Tian, W. Org. Electron. 2013, 14, 2124.
    34. (a) Zhu, H.; Li, W.; Wu, Y.; Liu, B.; Zhu, S.; Li, X.; Ågren, H.; Zhu, W. ACS Sustainable Chem. Eng. 2014, 2, 1026. (b) Zhu, W.; Wu, Y.; Wang, W. S.; Li, W.; Li, X.; Chen, J.; Wang, Z.-S.; Tian, H. Adv. Funct. Mater. 2011, 21, 756. (c) Wu, Y.; Marszalek, M.; Zakeeruddin, S. M.; Zhang, Q.; Tian, H.; Grӓtzel, M.; Zhu, W. Energy Environ. Sci. 2012, 5, 8261. (d) Wu, Y.; Zhang, X.; Li, W.; Wang, Z.-S.; Tian, H.; Zhu, W. Adv. Energy Mater. 2012, 2, 149. (e) Wu, Z.; Li, X.; Li, J.; Hua, J.; Ågren, H.; Tian, H. Chem. Asian J. 2014, 9, 3549.
    35. (a) Singh, S. P.; Roy, M.S.; Thomas, A.; Bhanuprakash, K.; Sharma, G.D. Org. Electron. 2012, 13, 3108. (b) Lu, X.; Feng, Q.; Lan, T.; Zhou, G.; Wang, Z.-S. Chem. Mater. 2012, 24, 3179. (c) Pei, K.; Wu, Y.; Islam, A.; Zhu, S.; Han, L.; Geng, Z.; Zhu, W. J. Phys. Chem. C 2014, 118, 16552. (d) Cui, Y.; Wu, Y.; Lu, X.; Zhang, X.; Zhou, G.; Miapeh, F. B.; Zhu, W.; Wang, Z.-S. Chem. Mater. 2011, 23, 4394.
    36. (a) Velusamy, M.; Thomas, K. R. J.; Lin, J. T.; Hsu, Y.-C.; Ho, K.-C. Org. Lett. 2005, 7, 1899. (b) Yen, Y.-S.; Lee, C.-T.; Hsu, C.-Y.; Chou, H.-H.; Chen, Y.-C.; Lin, J. T. Chem. Asian J. 2013, 8, 809.
    37. (a) Liang, M.; Chen, J. Chem. Soc. Rev. 2013, 42, 3453. (b) Yen, Y.-S.; Chou, H.-H.; Chen, Y.-C.; Hsu, C.-Y.; Lin, J. T. J. Mater. Chem. 2012, 22, 8734. (c) Tian, H.; Yang, X.; Chen, R.; Zhang, R.; Hagfeldt, A.; Sun, L. J. Phys. Chem. C. 2008, 112, 11023.
    38. Thomas, K. R. J.; Lin, J. T.; Hsu, Y.-C.; Ho, K.-C. Chem. Commun. 2005, 4098.
    39. (a) Bolag, A.; Nishida, J.-I.; Hara, K.; Yamashita, Y. Chem. Lett. 2011, 40, 510. (b) Franco, S. Garίn, J.; Baroja, N. M. De; Pérez-Tejada, R.; Orduna, J.; Yu, Y.; Lira-Cantú, M. Org. Lett. 2012, 14, 752.
    40. Yang, H.-Y.; Yen, Y.-S.; Hsu, Y.-C.; Chou, H.-H.; Lin, J. T. Org. Lett. 2010, 12, 16.
    41. Ding, J.; Li, Z.; Cui, Z.; Robertson, G. P.; Song, N.; Du, X.; Scoles, L. J. Polym. Sci., Part A: Polym. Chem. 2011, 49, 3374.
    42. Milstein, D.; Stille, J. K. J. Am. Chem. Soc. 1978, 100, 3636.
    43. Knoevenagel, E. Ber. Dtsch. Chem. Ges. 1898, 31, 2596.
    44. Tišler, M.; Stanovnik, B. Adv. Heterocycl. Chem. 1968, 9, 211.
    45. Ni, J.-S.; You, J.-J.; Hung, W.-I.; Kao, S.-W.; Chou, H.-H.; Lin, J. T. ACS Appl. Mater. Interfaces 2014, 6, 22612.
    46. Chou, H.-H.; Chen, Y.-C.; Huang, H.-J.; Lee, T.-H.; Lin, J. T.; Tsai, C.; Chen, K. J. Mater. Chem. 2012, 22, 10929.
    47. Huang, S.-T.; Hsu, Y.-C.; Yen, Y.-S.; Chou, H.-H.; Lin, J. T.; Chang, C.-W.; Hsu, C.-P.; Tsai, C.; Yin, D.-J. J. Phys. Chem. C 2008, 112, 19739.
    48. Hara, K.; Sato, T.; Katoh, R.; Furube, A.; Ohga, Y.; Shinpo, A.; Sura, S.; Sayama, K.; Sugihara, H.; Arakawa, H. J. Phys. Chem. B 2003, 107, 597.
    49. Hara, K.; Tchibana, T.; Ohga, Y.; Shinpo, A.; Suga, S.; Sayama, K.; Sugihara, H.; Arakawa, H. Sol. Energy Mater. Sol. Cells. 2003, 77, 89.
    50. Yen, Y.-S.; Hsu, C.-Y.; Lin, J. T.; Chang, C.-W.; Hsu, C.-P.; Yin, D.-J. J. Phys. Chem. C 2008, 112, 12557.
    51. Nazeeruddin, M. K.; Zakeeruddin, S. M.; Humphry-Baker, R.; Jirousek, M.; Liska, P.; Vlachopoulos, N.; Shklover, V.; Fisher, C. H.; Grӓtzel, M. Inorg. Chem. 1999, 38, 6298.
    52. Wenger, B.; Grӓtzel, M.; Moser, J.-E. J. Am. Chem. Soc. 2005, 127, 12150.
    53. Chaurasia, S.; Hung, W.-I.; Chou, H.-H.; Lin, J. T. Org. Lett. 2014, 16, 3052.
    54. Chaurasia, S.; Hsu, C.-Y.; Chou, H. -H.; Lin, J. T. Org. Electron. 2014, 15, 378.
    55. (a) Yen, Y.-S.; Lin, T.-Y.; Hsu, C.-T.; Chen, Y.-C.; Chou, H.-H.; Tsai, C.; Lin, J. T. Org. Electron. 2013, 14, 2546. (b) He, J.; Kuo, F.; Li, X.; Wu, W.; Yang, J.; Hua, J. Chem. Eur. J. 2012, 18, 7903.
    56. Kuang, D.; Ito, S.; Wenger, B.; Klein, C.; Moser, J. Humphry-Baker, R.; Zakeeruddin S. M.; Grӓtzel M. J. Am Chem. Soc. 2006, 128, 4146.

    QR CODE
    :::