| 研究生: |
謝宜呈 Yi-Cheng Hsieh |
|---|---|
| 論文名稱: |
高強度纖維透水混凝土磨耗與堵塞維護之初步研究 Abrasion and clogging maintenance of high-strength fiber reinforced pervious concrete |
| 指導教授: |
王勇智
Yung-Chih Wang 李明君 Ming-Gin Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 197 |
| 中文關鍵詞: | 高強度透水混凝土 、纖維透水混凝土 、磨耗 、堵塞維護 |
| 外文關鍵詞: | High Strength Pervious Concrete, Fiber Reinforced Pervious Concrete, Abrasion, clogging and maintenance |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究包含高強度透水混凝土與普通強度透水混凝土兩部分,高強度透水混凝土採用分層搗實次數與調整夯實能量建議作為研究的試驗配比,以製作混凝土28天抗壓強度42 MPa及孔隙15%為目標,並探討高強度與普通強度透水混凝土添加玻璃纖維(體積比0.25%、0.5%)及鋼纖維(體積比1%、2%)之加勁材,對抗壓強度、抗彎強度、彈性模數、韌性、磨損等之力學影響;另外,探討其服務維護階段,雨水夾帶大量砂土與落塵堵塞對透水係數之影響,採用ACI 522R_06變水頭滲透試驗配置,以φ9.5×15cm PVC管柱模擬落塵試驗與高濁度泥砂水堵塞現象,並探討透水混凝土海水淡化能力及稀硫酸溶液侵入之酸鹼值及導電度變化。
試驗結果顯示高強度透水混凝土添加足夠的玻璃纖維與鋼纖維,抗壓強度可提升,但低纖維含量其抗壓強度低於無纖維之高強度透水混凝土;透水混凝土抗彎強度亦會隨著養護齡期的增加而提升,但含玻璃纖維或鋼纖維之配比強度並無此趨勢發展,推測是由於具有不同纖維的透水混凝土的質量控制存在較大差異。高強度纖維透水混凝土其彈性模數皆與3795√fc’相當接近;高強度透水混凝土經玻璃纖維或鋼纖維加勁,抗彎強度與韌性皆有一定程度的提升,效果以鋼纖維較佳,可以提升韌性,於強度峰值後仍有30%左右承載力緩緩下降直至完全破壞,中點位移量可超過10mm。
磨損試驗結果顯示骨材越大耐磨性越差,且加入纖維後可增加混凝土耐磨能力;落塵堵塞模擬和高泥砂水侵入試驗發現使用吸塵與高壓水柱維護皆有效可提升透水性能,僅需2~3次維護即可恢復透水力6成左右;有關海水侵入結果顯示pH值會上升但鹽度並無改變;稀硫酸入侵結果顯示於倒入0.5公升後,pH值下降導電度上升,此趨勢各配比差異不大。
This study includes high strength and ordinary strength fiber reinforced pervious concretes. The mixtures of high strength pervious concrete were improved by adjusting the compaction energy and the layered tamping times. The high strength pervious concretes aims to carry out 28-day compressive strength above 42 MPa and porosity as close to 15% as possible to achieve the technical specifications. Both high strength and ordinary strength pervious concrete specimens reinforced with glass fiber (volume ratio of 0.25%, 0.5%) and steel fiber (1%, 2%) were observed and investigated in the compressive strength, flexural strength, elastic modulus, toughness, and abrasion resistance tests. In addition, experimental simulation of large amount of sand and dust clogging tests on the permeability coefficient during the service and maintenance phase were under evaluation. The falling-head permeameter test setup according to the ACI 522R-06 standard with a φ9.5×15cm PVC pipe was used to simulate the high mud sand and dust clogging phenomenon, and discuss the desalination ability of pervious concrete and the change of pH value and conductivity of dilute sulfuric acid solution test.
The test results show that high-strength pervious concrete with sufficient glass fiber and steel fiber could increase the compressive strength. However, the compressive strength of low-fiber content is lower than those ones without fiber. The flexural strength of pervious concrete will also increase as the curing age increases. However, the flexural strength of pervious concrete with glass fiber or steel fiber does not follow this trend due to large variation by quality control of pervious concrete with different fibers. Regardless of whether the high-strength pervious concrete mixture is improved or not, the modulus of elasticity is very close to 3795√f’c. The steel fiber can be the effective material to improve the bending strength and toughness properties of the pervious concrete. The results show about 30% of the bearing capacity gradually decreases after the peak strength until it is completely destroyed. The displacement of the midpoint can exceed 10 mm. The results of the abrasion test show that the larger the aggregate, the worse the abrasion resistance, and the fiber can increase the abrasion resistance of the concrete. The high mud sand and dust clogging results show that the pervious concrete can effectively improve the water permeability by vacuum sweeping and high-pressure washing maintenance. The water permeability could be restored to about 60% after optimal maintenance. The results of seawater intrusion show that the pH value will rise but the salinity has not changed. The results of the dilute sulfuric acid intrusion show that after pouring 0.5 liters, the pH value will decrease and the conductivity will increase. However, this trend has little difference in the mix proportion.
[1] Aamer Rafique Bhutta, M., Tsuruta, K., Mirza, J., “Evaluation of high-performance porous concrete properties”, Construction and Building Materials, Vol 31, pp. 67-73, 2012.
[2] Al-Manasir, A.A., Keil, L.D., “Physical properties of cement grout containing silica fume and superplasticizer”, ACI Materials Journal, Vol 89 (2), pp. 154-160, 1994.
[3] Asaeda, T., Ca, V.T., “Characteristics of permeable pavement during hot summer weather and impact on the thermal environment”, Building and Environment, Vol 35(4), pp.363-375, 2000.
[4] Chu, L., Fwa, T.F., “Laboratory Characterization of Clogging Potential of Porous Asphalt Mixtures”, TRR Journal of the Transportation Research Board, Vol 2672, pp.12-22, 2018.
[5] Dennis Vandegrift, Jr., Schindler, A.K., “The Effect of Test Cylinder Size on the Compressive Strength of Sulfur Capped Concrete Specimens”, Highway Research Center and Department of Civil Engineering at Auburn University, 2006.
[6] Dong Q., Wu H., Huang B., Shu X., Wang K., “Development of a simple and fast test method for measuring the durability of Portland cement pervious concrete.” Portland Cement Association, PCA R&D Serial No. SN3149, 2010.
[7] Goodbrake, C. J., Young, J. F. “Reaction of Beta-Dicalcium Silicate and Tricalcium Silicate with Carbon Dioxide and Water Vapor”, Journal of the American Ceramic Society, 62(3-4), pp.168-171, 1979.
[8] Sonia Rahman“Development of Durability PerformanceRelated Test Methods for PerviousConcrete Pavement” Waterloo, Ontario, Canada, 2015
[9] Kevern, J. T., Wang, K., and Schaefer, V. R., “Effect of regime on pervious concrete abrasion resistance”, Advancements in pervious concrete technology, pp.85-100, 2008.
[10] Kevern, J. T., “Operation and Maintenance of Pervious Concrete Pavements”, Presented at 90th Annual Meeting of the Transportation Research Board, Washington, D.C., 2011.
[11] Kevern, J. T.,Sparks J. D., “Low-cost Technigues for Improving the surface Durability of Pervious Concrete”, Journal of the Transportation Research Board, No. 2342,pp.83-89,2013.
[12] Kia, A., Wong, H.S., Cheeseman, C.R., “Clogging in permeable concrete : A review”, Journal of the Environmental Management, Vol 193, pp.221-233, 2017.
[13] Papenfus, N. “Applying concrete technology to abrasion resistance”, Proceedings of the 7th International Conference on Concrete Block Paving, Sun City, South Africa, 2003.
[14] Scott, B. D., Safiuddin, Md., “Abrasion Resistance of Concrete – Design, Construction and Case Study”, Concr. Res. Lett, Vol 6 (3),pp.136-148,2015.
[15] Shamsai, A., Rahmani, K., Peroti, S., Rahemi, L. “The effect of water-cement ratio in compressive and abrasion strength of the nano silica concretes”, World Applied Sciences Journal 17 (4),pp.540-545,2012
[16] Wild, S., Sabir, B.B., Khatib, J.M., “Factors influencing strength development of concrete containing silica fume”, Cement and Concrete Research, Vol 25(7), pp.1567-1580, 1995.
[17] Zhong, R., Wille, K., “Compression response of normal and high strength pervious concrete”, Construction and Building Materials, Vol 109, pp.177-187, 2016.
[18] Zhong, R., Wille, K., “Material design and characterization of high performance pervious concrete”, Construction and Building Materials, Vol 98, pp.51-60, 2015.
[19] Omar, A “The Effects of Polypropylene Fibers Additions on Compressive and TensileStrengths of Concrete”, International Journal of Civil and Environmental Engineering, ISSN:1701-8285, Vol.37, Issue.1.
[20] Avishreshth., Prem P ,B., Tanuj, C.“Characterization of Steel Fiber Reinforced Pervious Concrete for Applications in Low Volume Traffic Roads”Urbanization Challenges in Emerging Economies.
[21] S.E.Pilz & P.Oliveira & F.Regoso & V.A. Paulon & M.F. Costella, “Study of dosage and polypropylene fibers addiction”, IBRACON Structual amd Material Journal, Vol 12, Number 1 (February 2019), p. 101 – 121.
[22] L. Philipp& H. Björn&H. Klaus& B. Bryan“Glass Fiber Reinforced Concrete For Slabs On Ground”Fiber Concrete 2015, September 10-11, 2015, Prague, Czech Republic.
[23] Hamid P, B.,Behzad, N., Majid, F.“Steel Fiber Reinforced Concrete: A Review”,ICSECM,2011.
[24] K. H. TAN, Emiko & T. F. FWA“Steel fiber-reinforced pervious concretefor urban roads” New Technologies for Urban Safety of Mega Cities in AsiaOctober 2015.
[25] Hao, W., Baoshan, H., Xiang, S., Qiao, D. “Laboratory Evaluation of Abrasion Resistanceof Portland Cement Pervious Concrete” Journal of Materials in Civil Engineering May 2011.
[26] Omkar, D. Milani, S. Narayanan, N.“Permeability Reduction in Pervious Concretes dueto Clogging: Experiments and Modeling” Journal of Materials in Civil Engineering July 2010.
[27] M. RAMA, V.,M. SHANTHI.“Experimental Study On SedimentationRemoval Of Pervious Concrete” Archives Of Civil Engineering vol. 64 Issue1 2018.
[28] Ming-Gin Lee, Ming-Ju Lee, Yishuo Huang.“Purification Study of Pervious Concrete Pavement” IACSIT International Journal of Engineering and Technology, Vol. 5, No. 5, October 2013.
[29] Xinzhuang, C., Jiong, Z., Dan, H., Weize, T., Lei, W. “Experimental simulation of rapid clogging processof pervious concrete pavement caused by stormwater runoff”International Journal of Pavement Engineering, 2016.
[30] Alalea, K., Hong S.W.,Christopher R.C. “High-strength clogging resistant permeablepavement” International Journal Of Pavement Engineering. 2019.
[31] Vishal, J.&Paramveer, S.“Use of glass fiber in pavement quality concrete slab” International Journal of Advance Research, IJARIIT Vol.4 Issue 2.
[32] Piti S. “Toughness Evaluation Of Steel And Polypropylene Fiber Reinforced Concrete Beams Under Bending’’ Thammasat Int. J. Sc Tech., Vol. 9, No. 3, July-September 2004.
[33] 催新壯、張烔、黃丹、金青、侯飛,「暴雨作用下透水混凝土快速堵塞試驗模擬」,中國公路學報,2016年10月,第29卷,第十期。
[34] 王明倫,「透水混凝土設計品管應用之初步研究」,朝陽科技大學,碩士論文,2012年。
[35] 包春華,「透水混凝土應用於公路中之初步研究」,朝揚科技大學,碩士論文,2008年。
[36] 江佳良,「模擬透水混凝土應用在鋪面工程對於水質淨化之初步研究」,朝陽科技大學,碩士論文,2012年。
[37] 宋中南、石雲興「透水混凝土及其應用技術」,中國建築工業出版社,2011年
[38] 林奕妤,「互鎖作用對多孔隙瀝青混凝土性質影響之研究」,國立中興大學,碩士論文,2014年。
[39] 林登峰、黃隆昇、王忠山、葉庭瑋,「市區道路鋪竹排水性鋪面長期成效之研究」,鋪面工程,第10卷,第1期,47-54頁,2012年。
[40] 姚志廷、葉榮晟、戴政安,「高性能透水鋪面綠建材評定基準與應用」,技師期刊,第70卷,73-78頁,2015年。
[41] 洪盟峰、黃兆龍,「透水性水泥混凝土性質與應用之探討」,德霖學報,第18卷,343-353頁,2004年。
[42] 徐震宇,「不同透水性鋪面材料對鋪面溫度影響之探討」,國立中央大學,碩士論文,2008年。
[43] 張道光、李明君、顏聰、邱垂德、李昭明、陳毓清,「高性能混凝土應用於交通工程之研究-透水混凝土(3/3)」,臺北市:交通部運研所,2008年。
[44] 張道光、李明君、顏聰、邱垂德、黃怡碩、童文志、何政翰、林岱瑋、陳靖宇、賴明志,「透水混凝土應用在港灣構造物設施與公路路面成效評估之研究(2/2)」,交通部運輸研究所(編號:99-H1DB005),臺北市:交通部運輸研究所,2011年。
[45] 陳彥翔,「多孔隙瀝青混凝土鋪面堵塞之定量分析與實驗室模擬」,國立成功大學,碩士論文,2007年。
[46] 黃兆龍,「混凝土性質與行為」,臺北市:詹氏書局,2005年。
[47] 廖文正、林致淳、詹穎雯,「台灣混凝土彈性模數建議公式研究」,結構工程,第31卷,第3期,5-31頁,2016年。
[48] 蔡耀賢、林芳銘、陳振誠,「綠建材解說與評估手冊」,新北市:內政部建築研究所,2015年。
[49] 蕭宛瑄,「二氧化碳養護對高強度透水混凝土性質之影響」,國立中央大學,碩士論文,2018年。
[50] 吳守展,「高強度透水混凝土磨耗與堵塞維護之初步研究」,國立中央大學,碩士論文,2019年。
[51] 蘇南、林建志、楊鑫城,「矽灰、高嶺土及廢觸媒對強塑劑水泥砂漿性質影響比較」,中國土木水利工程學刊,第14卷第2期,319-325頁,2002年。