跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蘇芳賢
Fang-Xian Shu
論文名稱: 變壓吸附法濃縮二氧化硫之模擬
指導教授: 周正堂
Cheng-tung Chou
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
畢業學年度: 89
語文別: 中文
論文頁數: 70
中文關鍵詞: 回收二氧化硫酸雨現象真空變壓吸附模擬
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 廢氣中SO2、NOx、CO2及CO等空氣污染物普遍存在,造成了廣泛的複合污染。由於排放SO2及NOx所造成的酸雨污染以及CO2過量所引發的溫室效應,已成為嚴重的國際污染問題。目前最常處理廢氣的方法為吸收法,但廢溶液會有二次污染的問題須再生處理,如果使用變壓吸附法回收煙道氣中的二氧化硫,則不會有此問題,所以近年來這方面的研究逐漸受到重視。
    本研究是由模擬方式進行兩種真空變壓吸附程序的探討。進料為0.5﹪SO2,18﹪CO2,其餘為N2的混合氣體,吸附劑採用XAD-16(NO-treated)。模擬時採用的氣體分離機構為平衡模式,假設吸附塔內的同一截面積上固、氣兩相瞬間達成平衡,且為非恆溫之變壓吸附模式。因吸附劑顆粒大,故可忽略吸附塔內壓力降。
    模擬程式採用線方法,加上可調的節點,將偏微分方程組轉換成常微分方程組。用差分法估計微分值,塔內各點的流速則使用三次多項式估算。最後用ODEPACK軟體中的LSODE對時間積分求得聯立方程式的解。
    以此模擬程式探討不同操作變數對產物濃度與回收率的影響,期能藉此程序的探討,提供實驗程序上的考量。


    目錄Ⅰ 表目錄Ⅳ 圖目錄Ⅴ 第一章 緒論1 第二章 簡介及文獻回顧3 2.1 變壓吸附之簡介3 2.1.1 吸附的基本原理3 2.1.2 PSA製程的基本原理4 2.1.3 吸附劑及其選擇性5 2.1.4 操作步驟6 2.2 文獻回顧7 2.2.1 PSA程序之發展與改進7 2.2.2 理論之回顧9 2.2.3 PSA製程在回收煙道氣中污染物的應用11 第三章 理論13 3.1 基本假設14 3.2 統制方程式15 3.3 吸附平衡關係式18 3.4 參數推導25 3.4.1 軸向擴散係數25 3.4.2 管壁的熱傳係數26 3.5 起始條件與邊界條件27 3.6 求解的方法28 3.6.1 閥公式28 3.6.2 求解步驟29 第四章 製程描述32 4.1 四步驟製程34 4.2 六步驟製程35 第五章 結果與討論37 5.1 常數與操作條件37 5.2 模擬結果與比較40 5.3 六步驟變壓吸附之模擬43 5.3.1同向沖洗時間的影響43 5.3.2逆向減壓壓力的影響47 5.3.3逆向減壓時間的影響51 5.3.4進料加壓壓力的影響53 5.4 結論57 第六章 未來方向 58 符號說明60 參考文獻62 附錄A 流速之估算方法67

    1.Bird, R.B., W.E. Stewart and E. N. Lightfoot, Transport Phenomena, pp.503, Wiley, New York(1960).
    2.Chue, K.T., J.N. Yoo, S.H. Cho, and R.T. Yang, “Comparison of Activated Carbon and Zeolite 13X for CO2 Recovery from Flue Gas by Pressure Swing Adsorption”, Ind. Eng. Chem. Res., 34(2), 591-598 (1995).
    3.Diagne D., M. Goto and T. Hirose, “New PSA Process with Intermediate Feed Inlet Position Operated with Dual Refluxes: Application to Carbon Dioxide Removal and Enrichment”, J. Chem. Eng. Jpn., 27(1), 85-89(1994).
    4.Diagne D., M. Goto and T. Hirose, “Parametric Studies on CO2 Separation and Recovery by a Dual Reflux PSA Process Consisting of Both Rectifying and Stripping Sections ”, Ind. Eng. Chem. Res., 34, 3083-3089(1995).
    5.Diagne D., M. Goto and T. Hirose, “Numerical Analysis of a Dual Refluxed PSA Process During Simultaneous Removal and Concentration of Carbon Dioxide Dilute Gas from Air”, J. Chem. Tech. Biotechnol., 65, 29-38 (1996).
    6.Doong, S.J., and R.T. Yang, “Bulk Separation of Multicomponent Gas Mixtures by Pressure Swing Adsorption: Pore/Surface Diffusion and Equilibrium Models”, AIChE J., 32, 397 (1986).
    7.Doong, S.J., and R.T. Yang,“Bidisperse Pore Diffusion Model for Zeolite Pressure Swing Adsorption”, AIChE J., 33, 1045 (1987b).
    8.Farooq, S., and D. M. Ruthven, “A Comparison of linear Driving Force and Pore Diffusion Models for a Pressure Swing Adsorption Bulk Separation Process”, Chem. Eng. Sci., 45, 107 (1990b).
    9.Hassan, M. M., D. M. Ruthven, and N. S. Raghavan, “Air Separation by Pressure Swing Adsorption on A Carbon Molecular Sieve”, Chem. Eng. Sci., 41, 1333 (1986).
    10.Hassan, M. M., N. S. Raghavan, “Pressure Swing Adsorption Air Separation on a Carbon Molecular Seive-II. Investigation of a Modified Cycle with Pressure Equalization and No Purge”, Chem. Eng. Sci., 42, 2037 (1987).
    11.Hwang, K.S. and W.K. Lee, “The adsorption and Desorption Breakthrough Behavier of Carbon Monoxide and Carbon Dioxide on Activated.Effect of Total Pressure and Pressure-Dependent Mass Transfer Coefficients”, Separation Science and Technology, 29(14),1857-1891(1994).
    12.Izumi, J., “Hydrogen Sulfide Removel with Pressure Swing Adsorption from Process Off-Gas” in Fundamentals of Adsorption (Ed. M. Suzuki), Kodan-sha, Tokyo, 293-299(1992a).
    13.Izumi, J., “Process Off-Gas Treatment with Pressure Swing Adsorption”,Proceedings of Symposium on Adsorption Processes, Chung-Li, Taiwan, 71-84(1992b).
    14.Kikkinides, E.S., and R.T. Yang, “Simultaneous SO2/NOx Removel and SO2 Recovery from Flue Gas by Pressure Swing Adsorption ”, Ind. Eng. Chem. Res., 30(8), 1981-1989 (1991).
    15.Kikkinides, E.S., and R.T. Yang, “Gas Separation and Purification by Polymeric Adsorbents: Flue Gas Desulfurization and SO2 Recovery with Styrenic Polymers” ,Ind. Eng. Chem. Res., 32(10), 2365-2372(1993).
    16.Kikkinides, E.S., R.T. Yang and S.H. Cho, “Concentration and Recovery of CO2 from Flue Gas by Pressure Swing Adsorption”, Ind. Eng. Chem. Res., 32(11), 2714-2720 (1993).
    17.Kim, J.N., K.T. Chue, K.I. Kim, S.H. Cho and J.K. Kim, “Non-Isothermal Adsorption of Nitrogen-Carbon Dioxide Mixture in a Fixed Bed of Zeolite-X”, J. Chem. Eng. Japan, 27(1), 45-51 (1994).
    18.Lisovskii A., R. Semiat,*and C. Aharoni, “Adsorption of Sulfur Dioxide by Active Carbon Treated by Nitric Acid:Ⅰ.Effect of The Treatment on Adsorption of SO2 and Extractability of The Acid Formed”, Carbon,35(10),1997.
    19.Lisovskii A., R. Semiat,*and C. Aharoni, “Adsorption of Sulfur Dioxide by Active Carbon Treated by Nitric Acid:Ⅱ.Effect of Preheating on The Adsorption Properties”, Carbon,35(11),1997
    20.McCabe, W.L., J.C. smith, P. Harriott, Unit operations of Chemical Engineering, p.325, pp.406-408, Fourth Edition, McGraw-Hill, Inc.(1985)
    21.Nakao, S., and M. Suzuki, “Mass Transfer Coefficient in Cyclic Adsorption and Desorption”, J. Chem. Eng. Japan, 16, 114(1983).
    22.Pugsley T.S., F. Berruti and A, Chakma, “Computer Simulation of a Novel Circulating Fluidized Bed Pressure-Temperature Swing Adsorption for Recovering Carbon Dioxide from Flue Gases”, Chem. Eng. Sci., 49(22), 4465-4481(1994).
    23.Saji-A, Y.Takamura, H.Noda, “Application of PSA to Separation of Carbon-Dioxide from Flue-Gas”, KAGAKU KOGAKU RONBUNSHU 1997, Vol 23, Iss 2, pp 149-156.
    24.Shin, H.S., and K. S. Knabel, “Pressure Swing Adsorption: A Theoretical Study of Diffusion-Induced Separation”, AIChE J., 33, 654 (1987).
    25.Skarstrom, C.W., “Use of Adsorption Phenomena in Automatic Plant-Type Gas Analysis”, Ann., NY Acad. Sci.,72,751(1959).
    26.Smith, J.M. and H.C. Van Ness, Introduction to chemical Engineering Thermodynamics, p.109, 4th edith, McGraw-Hill Book Company,(1987)
    27.Guerin P. de Montgareuil and D. Domine, U.S. Patent 3,155,468, to Societe L‘ Air Liquide, Paris(1964).
    28.Kowler, D.E. and R. H. Kadlec, “The Optimal Control of a Periodic Adsorber”, AICHE. J., 18, 1027 (1972).
    29.Raghavan N. S. and D. M. Ruthven, M. M. Hassan, “Adsorption and Diffusion of Nitrogen and Oxygen in a Carbon Molecular Sieve”, Chem. Eng. Sci., 41, 1325 (1986).
    30.Rubel-AM and J.M.Stencel, The Effect of Low-Coneentration SO2 on the Adsorption of NO from Gas over Activated Carbon. pp 521-526. FUEL 1997.
    31.Tamura, T., U.S. Patent 3,797,201, assigned to T. Tamura, Tokoy, Japan(1974).
    32.Turnock, P. H., and R. H. Kadlec, “Separation of Nitrogen and Methane via Periodic Adsorption”, AIChE J., 17, 335 (1971).
    33.Welty, J.R.,C.R. Wicks, R.E. Wilson, Fundamentals of Momentum, Heat, and Mass Transfer, AppendixⅠ, John Wiley & Sons, Inc. (June 1983).
    34.Yang, R.T. and S.J. Doong, “Gas Separation by Pressure Swing Adsorption : A Pore Diffusion Model for Bulk Separation”, AICHE J., 31, 1829 (1985).
    35.Yang, R. T., and S. J. Doong, Gas Separation by Adsorption Processes, p. 127, p. 203, p. 255, p.256, p. 261, Butterworth, Boston (1987).
    36.Zhang, W.X., H. Yahiro, N. Mizuno, M. Iwamoto and J. Izumi, “Silver Ion-Exchanged Zeolites as Highly Effective Adsorbents for Removal of Nox by Pressure Swing Adsorption”, Journal of Materials Science Letters, 12, 1197-1198 (1993a).
    37.Zhang, W.X., H. Yahiro, N. Mizuno, J. Izumi and M. Iwamoto, “Removal of Nitrogen Monoxide on Copper Ion-Exchanged Zeolites by Pressure Swing Adsorption”, Langmuir, 9(9), 2337-2343 (1993b).
    38.Zhong Li and Ralph T. Yang, “Concentration Profile for Linear Driving Force Model for Diffusion in a Particle”, AICHE J.,45(1),1999.

    QR CODE
    :::