跳到主要內容

簡易檢索 / 詳目顯示

研究生: 哈納斯
HANAS SUBAKTI
論文名稱: 使用機器學習與量子機器學習提升室內定位效能
Improving Indoor Localization with Machine Learning and Quantum Machine Learning
指導教授: 江振瑞
Jehn-Ruey Jiang
口試委員:
學位類別: 博士
Doctor
系所名稱: 資訊電機學院 - 資訊工程學系
Department of Computer Science & Information Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 157
中文關鍵詞: 擴增實境藍牙室內定位機器學習量子機器學習智慧室內環境Wi-Fi
外文關鍵詞: Augmented Reality, Bluetooth, Indoor Localization, Machine Learning, Quantum Machine Learning, Smart Indoor Environment, Wi-Fi
相關次數: 點閱:33下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 室內定位 (Indoor Localization, IL) 是建構智慧家庭、智慧辦公室、智慧教室及智慧工廠等智慧室內環境的基礎技術。許多室內應用,例如室內擴增實境 (Indoor Augmented Reality, IAR),需依賴精準的室內定位以確保優良的使用者體驗與系統效能。本研究體認到室內定位是建構高效IAR系統的關鍵促成組件,因此提出「室內定位擴增實境框架 (Indoor Location-Based Augmented Reality Framework, ILARF)」。此框架為一可擴展架構,將室內定位系統作為核心模組整合至IAR應用中。對ILARF的探討顯示,利用低功耗藍牙 (Bluetooth Low Energy, BLE) 和Wi-Fi等無線設備訊號的射頻定位方法,具有高度發展潛力。這些方法提供多項實務優勢,包含低成本、易於部署及相當不錯的定位準確度。然而,研究過程亦突顯出欲藉此類方法達成高精度定位所面臨的重大挑戰,包括動態變化的嘈雜室內環境、不穩定的訊號強度、多路徑傳播及訊號干擾。為應對這些挑戰,本研究進一步聚焦於運用先進計算技術,特別是機器學習 (Machine Learning, ML) 與量子機器學習 (Quantum Machine Learning, QML),以提升室內定位的準確性。

    為此,本研究開發並評估了三種不同的計算方法學。第一種是以特徵為核心的方法,稱為指紋特徵提取 (Fingerprint Feature Extraction, FPFE),其採用自動編碼器 (Autoencoders, AE) 與主成分分析 (Principal Component Analysis, PCA) 從原始的接收訊號強度指示 (RSSI) 數據中提取穩健特徵,繼而透過基於閔可夫斯基距離 (Minkowski distance) 的匹配演算法進行位置估算,在一個於單一房間內收集的數據集上,展現了實現次米級定位準確度的能力,其平均絕對誤差 (Mean Absolute Error, MAE) 為0.68公尺。第二種是端到端的隨機森林迴歸 (RFR-IL) 模型,此模型在一個涵蓋多個房間與走廊大範圍區域且具挑戰性的公開基準數據集上,達成了約0.6公尺的MAE,從而建立了一個強大的新古典基準。最後,為探索可能超越傳統計算限制的解決方案,第三種方法引入了一個名為「量子隨機森林室內定位 (QRF-IL)」的量子啟發式模型。在相同的基準數據集上,其表現超越了先前最知名的基於訊號傳播模型的古典方法21\%,最終達成了2.3公尺的MAE。所有三種方法均透過多個系統原型與基準數據集進行驗證。總體而言,這些方法共同為提升當前最先進的室內定位技術提供了一份清晰的技術路線圖。


    Indoor Localization (IL) is a foundational technology for constructing smart indoor environments, including smart homes, smart offices, smart classrooms, and smart factories. Many indoor applications, such as Indoor Augmented Reality (IAR), rely on accurate IL to ensure good user experiences and system performance. Recognizing that IL is a critical enabling component for building effective IAR systems, this research proposes the Indoor Location-Based Augmented Reality Framework (ILARF)—an extensible architecture that integrates IL systems as core modules within IAR applications. The investigation of ILARF demonstrates that radio-based IL methods utilizing signals from wireless equipment, such as Bluetooth Low Energy (BLE) and Wi-Fi devices, are particularly promising. These methods offer several practical advantages, including low cost, ease of deployment, and reasonably good IL accuracy. However, the investigation also highlights significant challenges in achieving highly accurate IL with such methods. These challenges include dynamically changing and noisy indoor environments, unstable signal strength, multipath propagation, and signal interference. In response to these challenges, this research further focuses on improving IL accuracy with advanced computational techniques, particularly Machine Learning (ML) and Quantum Machine Learning (QML).

    To this end, this research develops and evaluates three distinct computational methodologies for IL. The first, Fingerprint Feature Extraction (FPFE), which employs Autoencoders (AE) and Principal Component Analysis (PCA) to derive robust features from raw Received Signal Strength Indicator (RSSI) data, followed by a Minkowski distance-based matching algorithm for location estimation, demonstrated the ability to achieve sub-meter localization accuracy, namely 0.68 meters of the Mean Absolute Error (MAE) on a dataset collected in a single room. The second, an end-to-end Random Forest Regression (RFR-IL) model, established a powerful new classical baseline by achieving an MAE of approximately 0.6 meters on a challenging public benchmark dataset collected in a large area of multiple rooms and corridors. Finally, to explore solutions beyond classical limits, a novel Quantum Random Forest for Indoor Localization (QRF-IL) was introduced, which outperformed the best-known classical signal-propagation-based method on the same benchmark by 21\%, achieving a final MAE of 2.3 meters. All three methods are validated through multiple system prototypes and benchmark datasets. Together, they provide a roadmap of techniques that advance the state of the art in IL.

    Table of Content 頁次 中文摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . v Table of Content . . . . . . . . . . . . . . . . . . . . . . . . . . vii List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . xi List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . 1 1-1 Overview . . . . . . . . . . . . . . . . . . . . . . 1 1-1-1 Overview ILARF - An Indoor Location-Based Augmented Reality Framework . . . . . . . . . . . . . 2 1-1-2 Overview of Fingerprint Feature Extraction for IL using Autoencoder and PCA . . . . . . . . . . . . 4 1-1-3 Overview of Random Forest Regression for Accurate IL . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1-1-4 Overview of Quantum Random Forest Regression for IL . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Chapter 2 An indoor location-based augmented reality framework 8 2-1 Introduction . . . . . . . . . . . . . . . . . . . . . 8 2-2 Proposed Architecture . . . . . . . . . . . . . . . . 11 2-2-1 Indoor Localization Unit (ILU) . . . . . . . . . . . 12 2-2-2 Secure Context-Aware Message Exchange Unit(SCAMEU) 19 2-2-3 AR Visualization and Interaction Unit . . . . . . . 23 2-3 Implementation at Gym Augmented Reality . . . . 25 2-3-1 Hardware and Software Specifications . . . . . . . 26 2-3-2 ILU Implementation . . . . . . . . . . . . . . . . . 27 vii 2-3-3 SCAMEU Implementation . . . . . . . . . . . . . 33 2-3-4 ARVIU Implementation . . . . . . . . . . . . . . . 35 2-4 Comparisons of GAR and Related Systems . . . . . 38 2-4-1 Overview of Related Systems . . . . . . . . . . . . 38 2-4-2 Comparison Result of GAR and Related Systems . . 39 2-5 Concluding Remarks . . . . . . . . . . . . . . . . 41 Chapter 3 Fingerprint Feature Extraction for IL . . . . . . . . 43 3-1 Introduction . . . . . . . . . . . . . . . . . . . . . 43 3-2 Related work . . . . . . . . . . . . . . . . . . . . 45 3-2-1 Problem Definition . . . . . . . . . . . . . . . . . 47 3-3 Proposed Methodology . . . . . . . . . . . . . . . 48 3-3-1 Fingerprint Data Collection and Normalization . . . 48 3-3-2 Fingerprint Feature Extraction with AE or PCA . . 49 3-3-3 RP Candidates Selection with Fingerprint Minkowski Distance . . . . . . . . . . . . . . . . . . . . . . . 53 3-3-4 TD Position Estimation . . . . . . . . . . . . . . . 54 3-4 Experiments and Results . . . . . . . . . . . . . . 54 3-4-1 Experiment Settings . . . . . . . . . . . . . . . . . 54 3-4-2 Performance Evaluation . . . . . . . . . . . . . . . 55 3-4-3 An FPFE Application . . . . . . . . . . . . . . . . 65 3-5 Concluding Remarks . . . . . . . . . . . . . . . . 66 Chapter 4 Random Forest Regression for Accurate IL . . . . . 69 4-1 Introduction . . . . . . . . . . . . . . . . . . . . . 69 4-2 Preliminaries . . . . . . . . . . . . . . . . . . . . 70 4-2-1 Decision Trees: The Building Blocks . . . . . . . . 70 4-2-2 From Decision Trees to Random Forests . . . . . . 71 4-2-3 Types of RFs: Classification and Regression . . . . 72 4-2-4 Training the Random Forest Regressor . . . . . . . 72 4-2-5 Random Forest Regression: Prediction Mechanism and Splitting Criteria . . . . . . . . . . . . . . . . 74 4-3 Proposed Methodology . . . . . . . . . . . . . . . 75 4-4 Experimental Results . . . . . . . . . . . . . . . . 77 4-4-1 Experiment Settings . . . . . . . . . . . . . . . . . 77 4-4-2 Number of Trees (NT) Effect on RFR-IL MAE . . . 78 viii 4-4-3 Max Depth (MD) Effect on RFR-IL MAE . . . . . 78 4-4-4 Comparison RFR-IL with other regression models . 79 4-5 Concluding Remarks . . . . . . . . . . . . . . . . 81 Chapter 5 Quantum Random Forest Regression for Indoor Localization . . . . . . . . . . . . . . . . . . . . . . 83 5-1 Introduction . . . . . . . . . . . . . . . . . . . . . 83 5-2 Preliminaries . . . . . . . . . . . . . . . . . . . . 85 5-2-1 Basic Concept of QC . . . . . . . . . . . . . . . . 85 5-2-2 Quantum Measurement . . . . . . . . . . . . . . . 90 5-2-3 Data Encoding . . . . . . . . . . . . . . . . . . . . 91 5-2-4 Quantum Circuit . . . . . . . . . . . . . . . . . . . 92 5-2-5 Parameterized Quantum Circuit . . . . . . . . . . . 94 5-3 Proposed Methodology . . . . . . . . . . . . . . . 97 5-3-1 Quantum Decision Trees (QDTs) . . . . . . . . . . 99 5-3-2 Nyström Quantum Kernel Estimation (NQKE) . . . 99 5-3-3 Weighted Centroid Regression (WCR) . . . . . . . 101 5-4 Experimental Results . . . . . . . . . . . . . . . . 102 5-4-1 Experiment Settings . . . . . . . . . . . . . . . . . 102 5-4-2 Results of Different K Values . . . . . . . . . . . . 103 5-4-3 Results of Different Numbers of QDTs . . . . . . . 104 5-5 Concluding Remarks . . . . . . . . . . . . . . . . 104 Chapter 6 Conclusion and Future Direction . . . . . . . . . . 107 6-1 Conclusion . . . . . . . . . . . . . . . . . . . . . 107 6-2 Future Directions . . . . . . . . . . . . . . . . . . 110

    [1] H. Subakti and J.-R. Jiang, “Indoor augmented reality using deep learning for industry 4.0 smart factories,” in 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC), vol. 02,
    2018, pp. 63–68.
    [2] P. Sirohi, A. Agarwal, and P. Maheshwari, “A survey on augmented
    virtual reality: Applications and future directions,” in 2020 Seventh International Conference on Information Technology Trends (ITT), 2020,
    pp. 99–106.
    [3] F. Zafari, A. Gkelias, and K. K. Leung, “A survey of indoor localization
    systems and technologies,” IEEE Communications Surveys Tutorials,
    vol. 21, no. 3, pp. 2568–2599, 2019.
    [4] P. E. N, M. Jeong, H. Park, S. W. Choi, and S. Kim, “Fingerprintingbased indoor localization with hybrid quantum-deep neural network,”
    IEEE Access, vol. 11, pp. 142 276–142 291, 2023.
    [5] X. Zhu and Y. Feng, “Rssi-based algorithm for indoor localization,”
    Communications and Network, vol. 05, pp. 37–42, 01 2013.
    [6] B. Yang, L. Guo, R. Guo, M. Zhao, and T. Zhao, “A novel trilateration
    algorithm for rssi-based indoor localization,” IEEE Sensors Journal,
    vol. 20, no. 14, pp. 8164–8172, 2020.
    [7] N. El-Sheimy and Y. Li, “Indoor navigation: state of the art and future
    trends,” Satellite Navigation, vol. 2, no. 1, p. 7, May 2021. [Online].
    Available: https://doi.org/10.1186/s43020-021-00041-3
    [8] T. D. Vy, T. L. N. Nguyen, and Y. Shin, “Pedestrian indoor localization
    and tracking using hybrid wi-fi/pdr for iphones,” in 2021 IEEE 93rd
    Vehicular Technology Conference (VTC2021-Spring), 2021, pp. 1–7.
    113
    [9] F. Shamsfakhr, A. Antonucci, L. Palopoli, D. Macii, and D. Fontanelli,
    “Indoor localization uncertainty control based on wireless ranging
    for robots path planning,” IEEE Transactions on Instrumentation and
    Measurement, vol. 71, pp. 1–11, 2022.
    [10] W. Ma, S. Zhang, and J. Huang, “Mobile augmented reality based indoor map for improving geo-visualization,” PeerJ Computer Science,
    vol. 7, p. e704, 2021.
    [11] L. F. de Souza Cardoso, F. C. M. Q. Mariano, and E. R. Zorzal,
    “A survey of industrial augmented reality,” Computers Industrial
    Engineering, vol. 139, p. 106159, 2020. [Online]. Available: https:
    //www.sciencedirect.com/science/article/pii/S036083521930628X
    [12] Y. Siriwardhana, P. Porambage, M. Liyanage, and M. Ylianttila, “A
    survey on mobile augmented reality with 5g mobile edge computing:
    Architectures, applications, and technical aspects,” IEEE Communications Surveys Tutorials, vol. 23, no. 2, pp. 1160–1192, 2021.
    [13] F. Baek, I. Ha, and H. Kim, “Augmented reality system for facility
    management using image-based indoor localization,” Automation in
    Construction, vol. 99, pp. 18–26, 2019. [Online]. Available: https:
    //www.sciencedirect.com/science/article/pii/S0926580518308021
    [14] H.-w. An and N. Moon, “Indoor positioning system using pyramidal
    beacon in mobile augmented reality,” in Advances in Computer Science
    and Ubiquitous Computing, J. J. Park, S. J. Fong, Y. Pan, and Y. Sung,
    Eds. Singapore: Springer Singapore, 2021, pp. 17–23.
    [15] G. Lee and H. Kim, “A hybrid marker-based indoor positioning
    system for pedestrian tracking in subway stations,” Applied Sciences,
    vol. 10, no. 21, 2020. [Online]. Available: https://www.mdpi.com/
    2076-3417/10/21/7421
    [16] D. Verde, L. Romero, P. M. Faria, and S. Paiva, “Architecture for
    museums location-based content delivery using augmented reality and
    beacons,” in 2022 IEEE International Smart Cities Conference (ISC2),
    2022, pp. 1–6.
    114
    [17] A. Martin, J. Cheriyan, J. Ganesh, J. Sebastian, and J. V, “Indoor
    navigation using augmented reality,” EAI Endorsed Transactions on
    Creative Technologies, vol. 8, no. 26, p. e1, Feb. 2021. [Online].
    Available: https://publications.eai.eu/index.php/ct/article/view/1426
    [18] B. Zhou, Z. Gu, W. Ma, and X. Liu, “Integrated ble and pdr indoor
    localization for geo-visualization mobile augmented reality,” in 2020
    16th International Conference on Control, Automation, Robotics and
    Vision (ICARCV), 2020, pp. 1347–1353.
    [19] H. Subakti and J.-R. Jiang, “A marker-based cyber-physical
    augmented-reality indoor guidance system for smart campuses,”
    in 2016 IEEE 18th International Conference on High Performance
    Computing and Communications; IEEE 14th International Conference on Smart City; IEEE 2nd International Conference on Data
    Science and Systems (HPCC/SmartCity/DSS), 2016, pp. 1373–1379.
    [20] F. Chen, Y. Huo, J. Zhu, and D. Fan, “A review on the study on mqtt
    security challenge,” in 2020 IEEE International Conference on Smart
    Cloud (SmartCloud), 2020, pp. 128–133.
    [21] S. Sureshkumar, C. P. Agash, S. Ramya, R. Kaviyaraj, and
    S. Elanchezhiyan, “Augmented reality with internet of things,” in 2021
    International Conference on Artificial Intelligence and Smart Systems
    (ICAIS), 2021, pp. 1426–1430.
    [22] S. H. Tayef, M. M. Rahman, and M. A. B. Sakib, “Design and implementation of iot based smart home automation system,” in 2021 24th
    International Conference on Computer and Information Technology
    (ICCIT), 2021, pp. 1–5.
    [23] Y. N. I. Nair, F. Azman, F. A. Rahim, and L. K. Cheng, “Endure: Augmented reality fitness mobile application,” in 2019 IEEE 4th International Conference on Computer and Communication Systems (ICCCS),
    2019, pp. 419–424.
    [24] N. Gurieva, I. Guryev, R. Sánchez, and E. Martínez, “Augmented reality for personalized learning technique: Climbing gym case study,”
    Open Journal for Information Technology, vol. 2, pp. 21–34, 12 2019.
    115
    [25] F. Rabbi, T. Park, B. Fang, M. Zhang, and Y. Lee, “When virtual
    reality meets internet of things in the gym: Enabling immersive
    interactive machine exercises,” Proc. ACM Interact. Mob. Wearable
    Ubiquitous Technol., vol. 2, no. 2, Jul. 2018. [Online]. Available:
    https://doi.org/10.1145/3214281
    [26] I. Ashraf, S. Hur, and Y. Park, “Smartphone sensor based indoor
    positioning: Current status, opportunities, and future challenges,”
    Electronics, vol. 9, no. 6, 2020. [Online]. Available: https:
    //www.mdpi.com/2079-9292/9/6/891
    [27] H. Zhao, W. Cheng, N. Yang, S. Qiu, Z. Wang, and J. Wang,
    “Smartphone-based 3d indoor pedestrian positioning through multimodal data fusion,” Sensors, vol. 19, no. 20, 2019. [Online]. Available:
    https://www.mdpi.com/1424-8220/19/20/4554
    [28] S. Park, J. H. Lee, and C. G. Park, “Robust pedestrian dead reckoning
    for multiple poses in smartphones,” IEEE Access, vol. 9, pp. 54 498–
    54 508, 2021.
    [29] Q. Wang, H. Luo, H. Xiong, A. Men, F. Zhao, M. Xia, and C. Ou,
    “Pedestrian dead reckoning based on walking pattern recognition and
    online magnetic fingerprint trajectory calibration,” IEEE Internet of
    Things Journal, vol. 8, no. 3, pp. 2011–2026, 2021.
    [30] J. Pinchin, C. Hide, and T. Moore, “A particle filter approach to indoor
    navigation using a foot mounted inertial navigation system and heuristic heading information,” in 2012 International Conference on Indoor
    Positioning and Indoor Navigation (IPIN), 2012, pp. 1–10.
    [31] I. Skog, J.-O. Nilsson, and P. Händel, “Evaluation of zero-velocity detectors for foot-mounted inertial navigation systems,” in 2010 International Conference on Indoor Positioning and Indoor Navigation, 2010,
    pp. 1–6.
    [32] N. Castañeda and S. Lamy-Perbal, “An improved shoe-mounted inertial navigation system,” in 2010 International Conference on Indoor
    Positioning and Indoor Navigation, 2010, pp. 1–6.
    116
    [33] J.-O. Nilsson, A. K. Gupta, and P. Händel, “Foot-mounted inertial navigation made easy,” in 2014 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 2014, pp. 24–29.
    [34] R. Feliz, E. Zalama, and J. Gómez-García-Bermejo, “Pedestrian tracking using inertial sensors,” Journal of Physical Agents, vol. 3, 01 2009.
    [35] O. Woodman and R. Harle, “Pedestrian localisation for indoor environments,” in UbiComp 2008 - Proceedings of the 10th International
    Conference on Ubiquitous Computing, 09 2008, pp. 114–123.
    [36] J. Qian, J. Ma, R. Ying, P. Liu, and L. Pei, “An improved indoor localization method using smartphone inertial sensors,” in International
    Conference on Indoor Positioning and Indoor Navigation, 2013, pp.
    1–7.
    [37] J. Bird and D. Arden, “Indoor navigation with foot-mounted strapdown
    inertial navigation and magnetic sensors [emerging opportunities for
    localization and tracking],” IEEE Wireless Communications, vol. 18,
    no. 2, pp. 28–35, 2011.
    [38] P. Bahl and V. Padmanabhan, “Radar: an in-building rf-based user location and tracking system,” in Proceedings IEEE INFOCOM 2000.
    Conference on Computer Communications. Nineteenth Annual Joint
    Conference of the IEEE Computer and Communications Societies
    (Cat. No.00CH37064), vol. 2, 2000, pp. 775–784 vol.2.
    [39] M. Youssef and A. Agrawala, “The horus wlan location determination
    system,” in Proceedings of the 3rd International Conference on
    Mobile Systems, Applications, and Services, ser. MobiSys ’05. New
    York, NY, USA: Association for Computing Machinery, 2005, p. 205–
    218. [Online]. Available: https://doi.org/10.1145/1067170.1067193
    [40] C. Kilinc, S. Al Mahmud Mostafa, R. U. Islam, K. Shahzad, and K. Andersson, “Indoor taxi-cab: Real-time indoor positioning and locationbased services with ekahau and android os,” in 2014 Eighth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, 2014, pp. 223–228.
    117
    [41] A. Haeberlen, E. Flannery, A. M. Ladd, A. Rudys, D. S. Wallach, and
    L. E. Kavraki, “Practical robust localization over large-scale 802.11
    wireless networks,” in Proceedings of the 10th Annual International
    Conference on Mobile Computing and Networking, ser. MobiCom ’04.
    New York, NY, USA: Association for Computing Machinery, 2004, p.
    70–84. [Online]. Available: https://doi.org/10.1145/1023720.1023728
    [42] T. Roos, P. Myllymäki, H. Tirri, P. Misikangas, and J. Sievänen, “A
    probabilistic approach to wlan user location estimation,” International
    Journal of Wireless Information Networks, vol. 9, no. 3, pp.
    155–164, Jul 2002. [Online]. Available: https://doi.org/10.1023/A:
    1016003126882
    [43] M. B. Kjærgaard, “Indoor location fingerprinting with heterogeneous
    clients,” Pervasive and Mobile Computing, vol. 7, no. 1, pp. 31–43,
    2011. [Online]. Available: https://www.sciencedirect.com/science/
    article/pii/S157411921000043X
    [44] F. Dong, Y. Chen, J. Liu, Q. Ning, and S. Piao, “A calibration-free localization solution for handling signal strength variance,” in International Workshop on Mobile Entity Localization and Tracking in GPSless Environments, Orlando, USA, September 2009, pp. 79–90.
    [45] K. Yedavalli, B. Krishnamachari, S. Ravula, and B. Srinivasan, “Ecolocation: a sequence based technique for rf localization in wireless sensor
    networks,” in IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks, 2005., 2005, pp. 285–292.
    [46] I. Ashraf, S. Hur, and Y. Park, “Indoor positioning on disparate
    commercial smartphones using wi-fi access points coverage area,”
    Sensors, vol. 19, no. 19, 2019. [Online]. Available: https://www.mdpi.
    com/1424-8220/19/19/4351
    [47] H. Yigit, “A weighting approach for knn classifier,” in 2013 International Conference on Electronics, Computer and Computation
    (ICECCO), 2013, pp. 228–231.
    118
    [48] O. Bialer, D. Raphaeli, and A. J. Weiss, “Maximum-likelihood direct
    position estimation in dense multipath,” IEEE Transactions on Vehicular Technology, vol. 62, no. 5, pp. 2069–2079, 2013.
    [49] Y. Li, Z. Gao, Z. He, Y. Zhuang, A. Radi, R. Chen, and N. ElSheimy, “Wireless fingerprinting uncertainty prediction based on
    machine learning,” Sensors, vol. 19, no. 2, 2019. [Online]. Available:
    https://www.mdpi.com/1424-8220/19/2/324
    [50] W. Zhang, K. Liu, W. Zhang, Y. Zhang, and J. Gu, “Deep
    neural networks for wireless localization in indoor and outdoor
    environments,” Neurocomputing, vol. 194, pp. 279–287, 2016.
    [Online]. Available: https://www.sciencedirect.com/science/article/
    pii/S0925231216003027
    [51] B. Wang, S. Zhou, W. Liu, and Y. Mo, “Indoor localization based on
    curve fitting and location search using received signal strength,” IEEE
    Transactions on Industrial Electronics, vol. 62, no. 1, pp. 572–582,
    2015.
    [52] X. Chen, S. Song, and J. Xing, “A toa/imu indoor positioning system
    by extended kalman filter, particle filter and map algorithms,” in 2016
    IEEE 27th Annual International Symposium on Personal, Indoor, and
    Mobile Radio Communications (PIMRC), 2016, pp. 1–7.
    [53] C. Gentner and T. Jost, “Indoor positioning using time difference of
    arrival between multipath components,” in International Conference
    on Indoor Positioning and Indoor Navigation, 2013, pp. 1–10.
    [54] M. Malajner, P. Planinsic, and D. Gleich, “Angle of arrival estimation using rssi and omnidirectional rotatable antennas,” IEEE Sensors
    Journal, vol. 12, no. 6, pp. 1950–1957, 2012.
    [55] Y. M. Chen, C.-L. Tsai, and R.-W. Fang, “Tdoa/fdoa mobile target localization and tracking with adaptive extended kalman filter,” in 2017
    International Conference on Control, Artificial Intelligence, Robotics
    Optimization (ICCAIRO), 2017, pp. 202–206.
    [56] H.-C. Yen, L.-Y. Ou Yang, and Z.-M. Tsai, “3-d indoor localization
    and identification through rssi-based angle of arrival estimation with
    119
    real wi-fi signals,” IEEE Transactions on Microwave Theory and Techniques, vol. 70, no. 10, pp. 4511–4527, 2022.
    [57] S. Subedi, G. R. Kwon, S. Shin, S. S. Hwang, and J. Y. Pyun, “Beacon
    based indoor positioning system using weighted centroid localization
    approach,” in 2016 Eighth International Conference on Ubiquitous and
    Future Networks (ICUFN), Vienna, Austria, July 2016, pp. 1016–1019.
    [58] S. Subedi and J.-Y. Pyun, “A survey of smartphone-based indoor
    positioning system using RF-based wireless technologies,” Sensors,
    vol. 20, no. 24, p. 7230, 2020.
    [59] R. Romli, A. F. Razali, N. H. Ghazali, N. A. Hanin, and S. Z. Ibrahim,
    “Mobile augmented reality (AR) marker-based for indoor library navigation,” in IOP Conference Series: Materials Science and Engineering, vol. 697, Perlis, Malaysia, December 2019, p. 012062.
    [60] H. J. Manaligod, M. J. Diño, S. Ghose, and J. Han, “Context computing
    for Internet of Things,” Journal of Ambient Intelligence and Humanized Computing, vol. 11, pp. 1361–1363, 2019.
    [61] S. Bandyopadhyay and A. Bhattacharyya, “Lightweight Internet protocols for web enablement of sensors using constrained gateway devices,” in 2013 International Conference on Computing, Networking
    and Communications (ICNC), San Diego, CA, USA, January 2013, pp.
    334–340.
    [62] A. Stanford-Clark and H. L. Truong, “MQTT for sensor networks
    (MQTT-SN) protocol specification,” International Business Machines
    (IBM) Corporation Version, vol. 1, no. 2, pp. 1–28, 2013.
    [63] N. Naik, “Choice of effective messaging protocols for IoT systems:
    MQTT, CoAP, AMQP and HTTP,” in 2017 IEEE International Systems Engineering Symposium (ISSE), Vienna, Austria, October 2017,
    pp. 1–7.
    [64] N. Naik, P. Jenkins, P. Davies, and D. Newell, “Native web communication protocols and their effects on the performance of web services
    and systems,” in 2016 IEEE International Conference on Computer
    120
    and Information Technology (CIT), Nadi, Fiji, December 2016, pp.
    219–225.
    [65] D. Thangavel, X. Ma, A. Valera, H.-X. Tan, and C. K.-Y. Tan, “Performance evaluation of MQTT and CoAP via a common middleware,” in
    2014 IEEE Ninth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), Singapore, April
    2014, pp. 1–6.
    [66] A. Ludovici, P. Moreno, and A. Calveras, “TinyCoAP: A novel constrained application protocol (CoAP) implementation for embedding
    RESTful web services in wireless sensor networks based on TinyOS,”
    Journal of Sensor and Actuator Networks, vol. 2, no. 2, pp. 288–315,
    2013.
    [67] N. S. Han, “Semantic service provisioning for 6LoWPAN: Powering
    Internet of Things applications on web,” Ph.D. dissertation, Institut National des Télécommunications, Paris, France, 2015.
    [68] G. Marsh, A. P. Sampat, S. Potluri, and D. K. Panda, “Scaling advanced
    message queuing protocol (AMQP) architecture with broker federation
    and InfiniBand,” Ohio State University, Columbus, OH, USA, Tech.
    Rep. OSU-CISRC-5/09-TR17, 2008.
    [69] N. Cavus, S. E. Mrwebi, I. Ibrahim, T. Modupeola, and A. Y. Reeves,
    “Internet of things and its applications to smart campus: A systematic
    literature review,” International Journal of Interactive Mobile Technologies, vol. 16, no. 1, pp. 17–35, 2022.
    [70] M. Alhanahnah and Q. Yan, “Towards best secure coding practice
    for implementing SSL/TLS,” in IEEE INFOCOM 2018-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Honolulu, HI, USA, April 2018, pp. 1–6.
    [71] J. E. Luzuriaga, M. Perez, P. Boronat, J. C. Cano, C. Calafate, and
    P. Manzoni, “A comparative evaluation of AMQP and MQTT protocols over unstable and mobile networks,” in 2015 12th Annual IEEE
    Consumer Communications and Networking Conference (CCNC), Las
    Vegas, NV, USA, January 2015, pp. 931–936.
    121
    [72] Y. C. Tsao, C. C. Shu, and T. S. Lan, “Development of a reminiscence
    therapy system for the elderly using the integration of virtual reality
    and augmented reality,” Sustainability, vol. 11, no. 17, p. 4792, 2019.
    [73] Android Developers, “Sensors overview,” https://developer.android.
    com/guide/topics/sensors/sensors_overview, 2022, accessed on June
    1, 2025.
    [74] N. Roy, H. Wang, and R. Roy Choudhury, “I am a smartphone and i
    can tell my user’s walking direction,” in Proceedings of the 12th Annual International Conference on Mobile Systems, Applications, and
    Services, New York, NY, USA, June 2004, pp. 329–342.
    [75] J.-R. Jiang, H. Subakti, C. C. Chen, and K. Sakai, “PINUS: Indoor
    weighted centroid localization with crowdsourced calibration,” in International Conference on Parallel and Distributed Computing: Applications and Technologies, Jeju Island, Korea, August 2018, pp. 433–
    443.
    [76] C. A. Balanis, Antenna Theory: Analysis and Design. New York, NY,
    USA: Wiley, 1997.
    [77] J.-R. Jiang, “An improved cyber-physical systems architecture for
    industry 4.0 smart factories,” Advances in Mechanical Engineering,
    vol. 10, no. 6, p. 1687814018784192, 2018.
    [78] D. J. Mallinson and S. Shafi, “Smart home technology: Challenges
    and opportunities for collaborative governance and policy research,”
    Review of Policy Research, vol. 39, no. 3, pp. 330–352, 2022.
    [79] R. Bazo, C. A. da Costa, L. A. Seewald, L. G. da Silveira,
    R. S. Antunes, R. d. R. Righi, and V. F. Rodrigues, “A survey
    about real-time location systems in healthcare environments,” J.
    Med. Syst., vol. 45, no. 3, Mar. 2021. [Online]. Available: https:
    //doi.org/10.1007/s10916-021-01710-1
    [80] K. Witrisal, P. Meissner, E. Leitinger, Y. Shen, C. Gustafson,
    F. Tufvesson, K. Haneda, D. Dardari, A. Molisch, A. Conti, and
    M. Win, “High-accuracy localization for assisted living: 5G systems
    122
    will turn multipath channels from foe to friend,” IEEE Signal Processing Magazine, vol. 33, no. 2, pp. 59–70, Mar. 2016.
    [81] A. Rácz-Szabó, T. Ruppert, L. Bántay, A. Löcklin, L. Jakab, and
    J. Abonyi, “Real-time locating system in production management,”
    Sensors, vol. 20, no. 23, 2020. [Online]. Available: https://www.mdpi.
    com/1424-8220/20/23/6766
    [82] W. Sakpere, M. Adeyeye-Oshin, and N. B. Mlitwa, “A state-of-theart survey of indoor positioning and navigation systems and technologies,” South African Computer Journal, vol. 29, no. 3, pp. 145–197,
    2017.
    [83] T. Kim Geok, K. Zar Aung, M. Sandar Aung, M. Thu Soe, A. Abdaziz,
    C. Pao Liew, F. Hossain, C. P. Tso, and W. H. Yong, “Review of indoor
    positioning: Radio wave technology,” Applied Sciences, vol. 11, no. 1,
    p. 279, 2020.
    [84] R. Want, A. Hopper, V. Falcao, and J. Gibbons, “The active badge
    location system,” ACM Transactions on Information Systems (TOIS),
    vol. 10, no. 1, pp. 91–102, 1992.
    [85] D. Arbula and S. Ljubic, “Indoor localization based on infrared angle
    of arrival sensor network,” Sensors, vol. 20, no. 21, p. 6278, 2020.
    [86] K. P. Subbu, B. Gozick, and R. Dantu, “Locateme: Magnetic-fieldsbased indoor localization using smartphones,” ACM Transactions on
    Intelligent Systems and Technology (TIST), vol. 4, no. 4, pp. 1–27,
    2013.
    [87] E. C. Carvalho, B. V. Ferreira, P. Geraldo Filho, P. H. Gomes, G. M.
    Freitas, P. A. Vargas, J. Ueyama, and G. Pessin, “Towards a smart fault
    tolerant indoor localization system through recurrent neural networks,”
    in 2019 International Joint Conference on Neural Networks (IJCNN).
    IEEE, 2019, pp. 1–7.
    [88] Y. Ma, G. Zhou, and S. Wang, “Wifi sensing with channel state information: A survey,” ACM Computing Surveys (CSUR), vol. 52, no. 3,
    pp. 1–36, 2019.
    123
    [89] S. Huang, K. Zhao, Z. Zheng, W. Ji, T. Li, and X. Liao, “An optimized
    fingerprinting-based indoor positioning with kalman filter and universal kriging for 5g internet of things,” Wireless Communications and
    Mobile Computing, vol. 2021, no. 1, p. 9936706, 2021.
    [90] J. Tiemann and C. Wietfeld, “Scalability, real-time capabilities, and
    energy efficiency in ultra-wideband localization,” IEEE Transactions
    on Industrial Informatics, vol. 15, no. 12, pp. 6313–6321, 2019.
    [91] F. J. Dian, A. Yousefi, and S. Lim, “A practical study on bluetooth low
    energy (ble) throughput,” in 2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). IEEE, 2018, pp. 768–771.
    [92] J.-R. Jiang, H. Subakti, C.-C. Chen, and K. Sakai, “Pinus: Indoor
    weighted centroid localization with crowdsourced calibration,” in Parallel and Distributed Computing, Applications and Technologies: 19th
    International Conference, PDCAT 2018, Jeju Island, South Korea, August 20-22, 2018, Revised Selected Papers 19. Springer, 2019, pp.
    433–443.
    [93] Z. Zuo, L. Liu, L. Zhang, and Y. Fang, “Indoor positioning based on
    bluetooth low-energy beacons adopting graph optimization,” Sensors,
    vol. 18, no. 11, 2018. [Online]. Available: https://www.mdpi.com/
    1424-8220/18/11/3736
    [94] G. Li, E. Geng, Z. Ye, Y. Xu, J. Lin, and Y. Pang, “Indoor positioning
    algorithm based on the improved rssi distance model,” Sensors, vol. 18,
    no. 9, p. 2820, 2018.
    [95] D. Giovanelli, E. Farella, D. Fontanelli, and D. Macii, “Bluetoothbased indoor positioning through tof and rssi data fusion,” in 2018 International Conference on Indoor Positioning and Indoor Navigation
    (IPIN). IEEE, 2018, pp. 1–8.
    [96] T. Tegou, I. Kalamaras, K. Votis, and D. Tzovaras, “A low-cost roomlevel indoor localization system with easy setup for medical applications,” in 2018 11th IFIP Wireless and Mobile Networking Conference
    (WMNC). IEEE, 2018, pp. 1–7.
    124
    [97] A. Mussina and S. Aubakirov, “Rssi based bluetooth low energy indoor
    positioning,” in 2018 IEEE 12th International Conference on Application of Information and Communication Technologies (AICT). IEEE,
    2018, pp. 1–4.
    [98] A. Mackey, P. Spachos, and K. N. Plataniotis, “Enhanced indoor
    navigation system with beacons and kalman filters,” in 2018 IEEE
    Global Conference on Signal and Information Processing (GlobalSIP).
    IEEE, 2018, pp. 947–950.
    [99] P. Martins, M. Abbasi, F. Sa, J. Celiclio, F. Morgado, and F. Caldeira,
    “Intelligent beacon location and fingerprinting,” Procedia Computer
    Science, vol. 151, pp. 9–16, 2019.
    [100] S. Subedi, H.-S. Gang, N. Y. Ko, S.-S. Hwang, and J.-Y. Pyun, “Improving indoor fingerprinting positioning with affinity propagation
    clustering and weighted centroid fingerprint,” IEEE Access, vol. 7, pp.
    31 738–31 750, 2019.
    [101] M. Li, L. Zhao, D. Tan, and X. Tong, “Ble fingerprint indoor localization algorithm based on eight-neighborhood template
    matching,” Sensors, vol. 19, no. 22, 2019. [Online]. Available:
    https://www.mdpi.com/1424-8220/19/22/4859
    [102] P. Malekzadeh, A. Mohammadi, M. Barbulescu, and K. N. Plataniotis,
    “Stupefy: Set-valued box particle filtering for bluetooth low energybased indoor localization,” IEEE Signal Processing Letters, vol. 26,
    no. 12, pp. 1773–1777, 2019.
    [103] C. S. Mouhammad, A. Allam, M. Abdel-Raouf, E. Shenouda, and
    M. Elsabrouty, “Ble indoor localization based on improved rssi and
    trilateration,” in 2019 7th International Japan-Africa Conference on
    Electronics, Communications, and Computations,(JAC-ECC). IEEE,
    2019, pp. 17–21.
    [104] T.-M. T. Dinh, N.-S. Duong, and K. Sandrasegaran, “Smartphonebased indoor positioning using ble ibeacon and reliable lightweight
    fingerprint map,” IEEE Sensors Journal, vol. 20, no. 17, pp. 10 283–
    10 294, 2020.
    125
    [105] T. Kluge, C. Groba, and T. Springer, “Trilateration, fingerprinting, and
    centroid: taking indoor positioning with bluetooth le to the wild,” in
    2020 IEEE 21st International Symposium on” A World of Wireless,
    Mobile and Multimedia Networks”(WoWMoM). IEEE, 2020, pp.
    264–272.
    [106] Z. Li, J. Cao, X. Liu, J. Zhang, H. Hu, and D. Yao, “A self-adaptive
    bluetooth indoor localization system using lstm-based distance estimator,” in 2020 29th International Conference on Computer Communications and Networks (ICCCN). IEEE, 2020, pp. 1–9.
    [107] N. Pakanon, M. Chamchoy, and P. Supanakoon, “Study on accuracy
    of trilateration method for indoor positioning with ble beacons,” in
    2020 6th international conference on engineering, applied sciences
    and technology (ICEAST). IEEE, 2020, pp. 1–4.
    [108] K. Kotrotsios and T. Orphanoudakis, “Accurate gridless indoor localization based on multiple bluetooth beacons and machine learning,” in
    2021 7th International Conference on Automation, Robotics and Applications (ICARA). IEEE, 2021, pp. 190–194.
    [109] Y. Zhu, X. Luo, S. Guan, and Z. Wang, “Indoor positioning method
    based on wifi/ bluetooth and pdr fusion positioning,” in 2021 13th
    International Conference on Advanced Computational Intelligence
    (ICACI). IEEE, 2021, pp. 233–238.
    [110] Q. Hu, F. Wu, R. K. Wong, R. C. Millham, and J. Fiaidhi, “A novel
    indoor localization system using machine learning based on bluetooth
    low energy with cloud computing,” Computing, pp. 1–27, 2023.
    [111] A. Nessa, B. Adhikari, F. Hussain, and X. N. Fernando, “A survey
    of machine learning for indoor positioning,” IEEE access, vol. 8, pp.
    214 945–214 965, 2020.
    [112] Y. N. Kunang, S. Nurmaini, D. Stiawan, A. Zarkasi et al., “Automatic
    features extraction using autoencoder in intrusion detection system,” in
    2018 International conference on electrical engineering and computer
    science (ICECOS). IEEE, 2018, pp. 219–224.
    126
    [113] H. Subakti, H.-S. Liang, and J.-R. Jiang, “Indoor localization with fingerprint feature extraction,” in 2020 IEEE Eurasia Conference on IOT,
    Communication and Engineering (ECICE). IEEE, 2020, pp. 239–242.
    [114] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
    data with neural networks,” science, vol. 313, no. 5786, pp. 504–507,
    2006.
    [115] B. Khaldi, F. Harrou, F. Cherif, and Y. Sun, “Improving robots swarm
    aggregation performance through the minkowski distance function,”
    in 2020 6th International Conference on Mechatronics and Robotics
    Engineering (ICMRE). IEEE, 2020, pp. 87–91.
    [116] N. M. Tiglao, M. Alipio, R. D. Cruz, F. Bokhari, S. Rauf, and S. A.
    Khan, “Smartphone-based indoor localization techniques: State-ofthe-art and classification,” Measurement, vol. 179, p. 109349, 2021.
    [117] O. Renaudin, T. Zemen, and T. Burgess, “Ray-tracing based fingerprinting for indoor localization,” in 2018 IEEE 19th International
    Workshop on Signal Processing Advances in Wireless Communications
    (SPAWC). IEEE, 2018, pp. 1–5.
    [118] G. Nápoles, I. Grau, A. Jastrzebska, and Y. Salgueiro, “Long short-term
    cognitive networks,” arXiv preprint arXiv:2106.16233, 2021.
    [119] M. Del Hougne, S. Gigan, and P. Del Hougne, “Deeply subwavelength
    localization with reverberation-coded aperture,” Physical Review Letters, vol. 127, no. 4, p. 043903, 2021.
    [120] C. Chen, Y. Chen, Y. Han, H.-Q. Lai, and K. R. Liu, “Achieving centimeter-accuracy indoor localization on wifi platforms: A frequency hopping approach,” IEEE Internet of Things Journal, vol. 4,
    no. 1, pp. 111–121, 2016.
    [121] C. Steiner and A. Wittneben, “Efficient training phase for
    ultrawideband-based location fingerprinting systems,” IEEE Transactions on Signal Processing, vol. 59, no. 12, pp. 6021–6032,
    2011.
    127
    [122] M. Vari and D. Cassioli, “mmwaves rssi indoor network localization,”
    in 2014 IEEE International Conference on Communications Workshops (ICC), 2014, pp. 127–132.
    [123] V. Savic and E. G. Larsson, “Fingerprinting-based positioning in distributed massive mimo systems,” in 2015 IEEE 82nd Vehicular Technology Conference (VTC2015-Fall), 2015, pp. 1–5.
    [124] J. Vieira, E. Leitinger, M. Sarajlic, X. Li, and F. Tufvesson, “Deep
    convolutional neural networks for massive mimo fingerprint-based
    positioning,” 2017. [Online]. Available: https://arxiv.org/abs/1708.
    06235
    [125] Y. Jin, N. O’Donoughue, and J. M. F. Moura, “Position location by
    time reversal in communication networks,” in 2008 IEEE International
    Conference on Acoustics, Speech and Signal Processing, 2008, pp.
    3001–3004.
    [126] S. Sen, B. Radunovic, R. R. Choudhury, and T. Minka, “You are
    facing the mona lisa: spot localization using phy layer information,” in
    Proceedings of the 10th International Conference on Mobile Systems,
    Applications, and Services, ser. MobiSys ’12. New York, NY, USA:
    Association for Computing Machinery, 2012, p. 183–196. [Online].
    Available: https://doi.org/10.1145/2307636.2307654
    [127] Z.-H. Wu, Y. Han, Y. Chen, and K. J. R. Liu, “A time-reversal
    paradigm for indoor positioning system,” IEEE Transactions on Vehicular Technology, vol. 64, no. 4, pp. 1331–1339, 2015.
    [128] A. Del Corte-Valiente, J. M. Gómez-Pulido, O. Gutiérrez-Blanco,
    and J. L. Castillo-Sequera, “Localization approach based on raytracing simulations and fingerprinting techniques for indoor–outdoor
    scenarios,” Energies, vol. 12, no. 15, 2019. [Online]. Available:
    https://www.mdpi.com/1996-1073/12/15/2943
    [129] G. C. Alexandropoulos, N. Shlezinger, and P. del Hougne, “Reconfigurable intelligent surfaces for rich scattering wireless communications:
    Recent experiments, challenges, and opportunities,” IEEE Communications Magazine, vol. 59, no. 6, pp. 28–34, 2021.
    128
    [130] Z. Abu-Shaban, K. Keykhosravi, M. F. Keskin, G. C. Alexandropoulos, G. Seco-Granados, and H. Wymeersch, “Near-field localization
    with a reconfigurable intelligent surface acting as lens,” in ICC 2021 -
    IEEE International Conference on Communications, 2021, pp. 1–6.
    [131] S. Hayward, K. van Lopik, C. Hinde, and A. West, “A survey of
    indoor location technologies, techniques and applications in industry,”
    Internet of Things, vol. 20, p. 100608, 2022. [Online]. Available: https:
    //www.sciencedirect.com/science/article/pii/S2542660522000907
    [132] S. G. Leitch, Q. Z. Ahmed, W. B. Abbas, M. Hafeez, P. I. Laziridis,
    P. Sureephong, and T. Alade, “On indoor localization using wifi, ble,
    uwb, and imu technologies,” Sensors, vol. 23, no. 20, 2023. [Online].
    Available: https://www.mdpi.com/1424-8220/23/20/8598
    [133] Y. Assayag, H. Oliveira, E. Souto, R. Barreto, and R. Pazzi, “Adaptive
    path loss model for ble indoor positioning system,” IEEE Internet of
    Things Journal, vol. 10, no. 14, pp. 12 898–12 907, 2023.
    [134] A. Moradbeikie, R. Azevedo, C. Jesus, and S. I. Lopes, “Rssi-based localization in industrial environments: A wi-fi/ble hybrid approach,” in
    2024 IEEE International Conference on Industrial Technology (ICIT),
    2024, pp. 1–6.
    [135] D. D. Nguyen and M. Thuy Le, “Enhanced indoor localization based
    ble using gaussian process regression and improved weighted knn,”
    IEEE Access, vol. 9, pp. 143 795–143 806, 2021.
    [136] D. Cannizzaro, M. Zafiri, D. Jahier Pagliari, E. Patti, E. Macii, M. Poncino, and A. Acquaviva, “A comparison analysis of ble-based algorithms for localization in industrial environments,” Electronics, vol. 9,
    no. 1, p. 44, 2019.
    [137] H. J. Bae and L. Choi, “Large-scale indoor positioning using geomagnetic field with deep neural networks,” in ICC 2019-2019 IEEE International Conference on Communications (ICC). IEEE, 2019, pp.
    1–6.
    [138] D. Ko, S.-H. Choi, S. Ahn, and Y.-H. Choi, “Robust indoor
    localization methods using random forest-based filter against mac
    129
    spoofing attack,” Sensors, vol. 20, no. 23, 2020. [Online]. Available:
    https://www.mdpi.com/1424-8220/20/23/6756
    [139] H. Arabsorkhi, M. Ghaemifar, S. Ebadollahi, and S. Moradi,
    “Ga-tuned ensemble learning for improving the performance of wi-fi rss-based indoor positioning,” 2024, Conference paper, p. 349 –354, cited by: 1. [Online].
    Available: https://www.scopus.com/inward/record.uri?eid=2-s2.
    0-85194893154&doi=10.1109%2fICWR61162.2024.10533318&
    partnerID=40&md5=1a56d577e1596fa3f9fa911389d9df51
    [140] Y. Assayag, H. Oliveira, M. Lima, J. Junior, M. Preste, L. Guimarães,
    and E. Souto, “Indoor environment dataset based on rssi collected
    with bluetooth devices,” Data in Brief, vol. 55, p. 110692, 2024.
    [Online]. Available: https://www.sciencedirect.com/science/article/
    pii/S2352340924006590
    [141] C. C. Kumar and V. Parthipan, “Performance analysis of predicting
    lic stock price using lasso regression compared with random forest
    regression,” in 2024 Second International Conference Computational
    and Characterization Techniques in Engineering Sciences (IC3TES),
    2024, pp. 1–5.
    [142] M. S. Hossain Lipu, M. A. Hannan, A. Hussain, S. Ansari, S. A. Rahman, M. H. Saad, and K. M. Muttaqi, “Real-time state of charge estimation of lithium-ion batteries using optimized random forest regression
    algorithm,” IEEE Transactions on Intelligent Vehicles, vol. 8, no. 1,
    pp. 639–648, 2023.
    [143] L. Qi, Y. Liu, Y. Yu, L. Chen, and R. Chen, “Current status
    and future trends of meter-level indoor positioning technology: A
    review,” Remote Sensing, vol. 16, no. 2, 2024. [Online]. Available:
    https://www.mdpi.com/2072-4292/16/2/398
    [144] R. M. M. R. Rathnayake, M. W. P. Maduranga, V. Tilwari, and M. B.
    Dissanayake, “Rssi and machine learning-based indoor localization
    systems for smart cities,” Eng, vol. 4, no. 2, pp. 1468–1494, 2023.
    [Online]. Available: https://www.mdpi.com/2673-4117/4/2/85
    130
    [145] X. Zheng, R. Cheng, and Y. Wang, “Rssi-knn: A rssi indoor localization approach with knn,” in 2023 IEEE 2nd International Conference
    on Electrical Engineering, Big Data and Algorithms (EEBDA), 2023,
    pp. 600–604.
    [146] S. Debnath and K. O’Keefe, “Proximity estimation with ble rssi
    and uwb range using machine learning algorithm,” in 2023 13th International Conference on Indoor Positioning and Indoor Navigation
    (IPIN), 2023, pp. 1–6.
    [147] R. Souissi, I. Ktata, S. Sahnoun, A. Fakhfakh, and F. Derbel, “Improved rssi distribution for indoor localization application based on real
    data measurements,” in 2024 21st International Multi-Conference on
    Systems, Signals Devices (SSD), 2024, pp. 486–491.
    [148] S. Mittal, Y. Chand, and N. K. Kundu, “Hybrid quantum neural network based indoor user localization using cloud quantum computing,”
    in 2024 IEEE Region 10 Symposium (TENSYMP), 2024, pp. 1–8.
    [149] K. Khadiev and L. Safina, “The quantum version of random forest
    model for binary classification problem,” in Proceedings of YRID2020: International Workshop on Data Mining and Knowledge Engineering, Stavropol, Russia, Oct. 2020, october 15–16, 2020.
    [150] L. Safina, K. Khadiev, I. Zinnatullin, and A. Khadieva, “Quantum
    circuit for random forest prediction,” Russian Microelectronics,
    vol. 52, no. 1, pp. S384–S389, 2023. [Online]. Available: https:
    //doi.org/10.1134/S1063739723600619
    [151] M. Srikumar, C. D. Hill, and L. C. L. Hollenberg, “A kernelbased quantum random forest for improved classification,” Quantum
    Machine Intelligence, vol. 6, no. 1, p. 10, Feb 2024. [Online].
    Available: https://doi.org/10.1007/s42484-023-00131-2
    [152] J. D. Hidary and J. D. Hidary, Dirac Notation. -, 2021.
    [153] R. D. M. Simões, P. Huber, N. Meier, N. Smailov, R. M. Füchslin, and
    K. Stockinger, “Experimental evaluation of quantum machine learning
    algorithms,” IEEE Access, vol. 11, pp. 6197–6208, 2023.
    131
    [154] F. Zhang, T.-Y. Wu, Y. Wang, R. Xiong, G. Ding, P. Mei, and L. Liu,
    “Application of quantum genetic optimization of lvq neural network
    in smart city traffic network prediction,” IEEE Access, vol. 8, pp.
    104 555–104 564, 2020.
    [155] Y. Li, R.-G. Zhou, R. Xu, J. Luo, and W. Hu, “A quantum deep convolutional neural network for image recognition,” Quantum Science and
    Technology, vol. 5, no. 4, p. 044003, 2020.
    [156] B. Narottama and S. Y. Shin, “Quantum neural networks for resource
    allocation in wireless communications,” IEEE Transactions on Wireless Communications, vol. 21, no. 2, pp. 1103–1116, 2021.
    [157] P. Rebentrost, M. Mohseni, and S. Lloyd, “Quantum support vector
    machine for big data classification,” Phys. Rev. Lett., vol. 113, p.
    130503, Sep 2014. [Online]. Available: https://link.aps.org/doi/10.
    1103/PhysRevLett.113.130503
    [158] C. Williams and M. Seeger, “Using the nyström method to
    speed up kernel machines,” in Advances in Neural Information Processing Systems, vol. 13. MIT Press, 2000. [Online].
    Available: https://proceedings.neurips.cc/paper_files/paper/2000/file/
    19de10adbaa1b2ee13f77f679fa1483a-Paper.pdf
    [159] V. Havlíček, A. D. Córcoles, K. Temme, A. W. Harrow, A. Kandala,
    J. M. Chow, and J. M. Gambetta, “Supervised learning with quantumenhanced feature spaces,” Nature, vol. 567, no. 7747, pp. 209–212,
    2019.
    [160] A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M.
    Chow, and J. M. Gambetta, “Hardware-efficient variational quantum
    eigensolver for small molecules and quantum magnets,” nature, vol.
    549, no. 7671, pp. 242–246, 2017.

    QR CODE
    :::