跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林愷紘
Kai-Hung Lin
論文名稱: LETKF加速就位法於颱風同化預報之應用
Application of LETKF with Running In Place to Typhoon Assimilation and Prediction
指導教授: 楊舒芝
Shu-Chih Yang
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 大氣物理研究所
Graduate Institute of Atmospheric Physics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 105
中文關鍵詞: 加速就位法系集卡曼濾波器資料同化
外文關鍵詞: RIP, EnKF, data assimilation
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為培養系集擾動的流場相依特性,系集卡曼濾波器(Ensemble Kalman Filter, EnKF)需一定spin-up時間使系集卡曼濾波器達到理想表現。針對颱風同化與預報課題,本篇在觀測系統模擬實驗(Observation System Simulation Experiment, OSSE)架構下探討加速就位法(Running In Place, RIP)法是否在同化早期可更有效使用QuikSCAT衛星與投落送觀測資料。
    在本研究中,利用模式WRF與LETKF-RIP的方法模擬梅姬颱風(2010),同化資料包括sounding、Quikscat表面風場與飛機觀測。根據實驗結果顯示,若同化中使用RIP這個方法,可以在較早的時間就得到與真實場相近的預報路徑。同時在實驗中也針對系集數量進行探討,從理論上來看,系集的數量是越多越好,但是本研究中證實即使使用較少的系集數量,配合RIP方法的使用後亦可發揮不錯的效果。


    The ensemble Kalman filter (EnKF) needs a number of analysis cycles to develop reliable ensemble-based background error covariances for better analysis performance. Focusing on typhoon assimilation and prediction, this study carries out observation system simulation experiments (OSSEs) to investigate the effects of applying the Running In Place (RIP) method to the assimilation of QuikSCAT and dropsonde observation data at early analysis cycles, In these experiments, the Weather Research and Forecasting (WRF) model coupled with the local ensemble transform Kalman filter (LETKF) and RIP is used to simulate Typhoon Megi (2010) assimilating sounding, Quikscat surface wind and airplane observations. The results show that the track forcasts initialized at early time are better in the assimilation experiments with RIP. Besides, even though a larger ensemble size theoretically gives higher analysis accuracy, it is found that RIP is still beneficial when the ensemble size is smaller.

    中文摘要…………………………………………………………………i 英文摘要…………………………………………………………………ii 致謝……………………………………………………………………iii 目錄………………………………………………………………………v 圖表說明……………………………………………………………… vii 一、 前言 1.1 研究動動機與目的…………………………………………… 1 1.2 文獻回顧……………………………………………………… 2 二、 模式與同化系統 2.1 天氣預報系統………………………………………………… 8 2.2 同化系統……………………………………………………… 9 2.3 Running In Place 方法……………………………………… 12 三、 OSSE實驗設定 3.1 觀測系統模擬實驗(OSSE)介紹…………………………………16 3.2 真實個案介紹……………………………………………………17 3.3 真實場與初始系集………………………………………………18 3.4 觀測資料設定……………………………………………………20 3.5 實驗設定 ……………………………………………………… 21 四、 實驗結果與討論 4.1 標準LETKF與LETKF-RIP實驗之分析場結果…………… 23 4.2 系集預報與單一預報結果討論…………………………… 26 4.3 不同系集數量的結果討論…………………………………31 五、 結論與未來展望………………………………………………35 參考文獻……………………………………………………………… 37 附表與附圖…………………………………………………………… 43

    周婉婷、2007: DOTSTAR 投落送資料與其他衛星觀測資料對颱風路徑模擬影響
    之探討—梅姬與卡努颱風個案研究。國立台灣大學,大氣科學研究所,碩士
    論文,92頁。
    廖苡珊,2009:DOTSTAR策略性觀測投落送資料對於颱風路徑模擬影響研究。
    國立台灣大學,大氣科學研究所,碩士論文,112頁。
    連國淵,2009:颱風路徑與結構同化研究-系集卡爾曼濾波器。國立台灣大學,
    大氣科學研究所,碩士論文,87頁。
    高晟傑,2012:利用WRF-LETKF同化系統探討掩星折射率觀測對於強降水事
    件 預報之影響。國立中央大學,大氣物理研究所,碩士論文,70頁。
    林冠任,2012: 改善區域系集卡爾曼濾波器在颱風同化及預報中的spin-up問題
    - 2008年颱風辛樂克個案研究。國立中央大學,大氣物理研究,所碩士論
    文,68頁。
    Barker, D. M., W. Huang, Y.-R. Guo, and Q. N. Xiao, 2004: A
    Three- Dimensional(3DVAR) Data Assimilation System For
    Use With MM5: Implementation and initial Results. Mon.
    Wea. Rev., 132, 897-914.
    Buckingham, C. , T. Marchok, I. Ginis, L. Rothstein and D.
    Rowe,2010: Short- and Medium-Range Prediction of
    Tropical and Transitioning Cyclone Track within the
    NCEP Global Ensemble Forecasting System, Wea.
    Forecasting, 25, 736-754.
    Bishop, C. H., B. Etherton, and S. J. Majumdar, 2001:
    Adaptive sampling with the ensemble transform Kalman
    filter. Part I: Theoretical aspects. Mon. Wea. Rev.,
    129, 420–436.
    Buckingham, C., T. Marchok, I. Ginis, L. Rothstein and D.
    Rowe,2010:Short- and Medium-Range Prediction of Tropical
    and Transitioning Cyclone Track within the NCEP Global
    Ensemble Forecasting System, Wea. Forecasting, 25, 736-
    754.
    Chen, Y., and C. Snyder, 2007: Assimilating vortex position
    with an ensemble Kalman filter. Mon. Wea. Rev., 135,
    1828-1845.
    Chen, S.-H., 2007: The impact of assimilating SSM/I and
    QuikSCAT satellite winds on Hurricane Isidore
    simulations. Mon. Wea. Rev., 135, 549-566.
    Chou, K.-H., and C.-C. Wu, 2008: Chou, K.-H., and C.-C. Wu,
    2008: Development of the typhoon initialization in a
    mesoscale model–ombination of the bogused vortex with
    the dropwindsonde data in DOTSTAR. Mon. Wea. Rev., 136,
    865-879.
    Dowell, D., F. Zhang, L. Wicker, C. Snyder and N. A. Crook,
    2004: Wind and thermodynamic retrievals in the 17 May
    1981 Arcadia, Oklahoma supercell: Ensemble Kalman filter
    experiments. Mon. Wea. Rev., 132, 1982-2005.
    Dudhia, J., 1989: Numerical study of convection observed
    during the winter monsoon experiment using a mesoscale
    two-dimensional model, J. Atmos. Sci., 46, 3077–3107.
    Huang, J.-H., J.-N. Li, X.-L. Wei, S.-K. Fong, A.-Y. Wang,
    2006: Assimilation of QuikSCAT data and its impact on
    prediction of Typhoon Vongfong(2002). Act. Sci. Natur.
    Uni. Sun., 45, 116-120.
    Hong, S.-Y., and Y. Noh, and J. Dudhia, 2006: A new vertical
    diffusion package with an explicit treatment of
    entrainment processes. Mon. Wea. Rev., 134, 2318–2341.
    Hunt, B.R., E. Kostelich, I. Szunyogh, 2007: Efficient data
    assimilation for spatiotemporal chaos: a Local Ensemble
    Transform Kalman Filter. Physica D, 230, 112-126.
    Jung, B.-J., H. M. Kim, F. Zhang, and C.-C. Wu, 2012: Effect
    of targeted dropsonde observations and best track data
    on the track forecasts of Typhoon Sinlaku(2008)using an
    ensemble Kalman filter. Tellus A., 64, 1-19. doi:
    10.3402/ tellusa.v64i0.14984 (SCI).
    Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional
    entraining/detraining plume model and its application in
    convective parameterization. J. Atmos. Sci., 47, 2784-
    2802.
    ——, and ——, 1993: Convective parameterization for mesoscale
    models: The Kain-Fritsch scheme. The Representation of
    Cumulus Convection in Numerical Models, edited by K.A.
    Emanuel and D.J. Raymond, Amer. Meteor. Soc., 246 pp.
    ——, 2004: The Kain-Fritsch convective parameterization: An
    update. J. Appl. Meteor., 43, 170–181.
    Kalnay E, S.-C. Yang. 2010: Accelerating the spin-up of
    Ensemble Kalman Filter. Q.J.R. Meteorol. Soc. 136: 1644-
    1651.
    Kunii, M., and T. Miyoshi, 2012: Including uncertainties of
    sea surface temperature in an ensemble Kalman filter: a
    case study of Typhoon Sinlaku (2008). Weather and
    Forecasting, in press doi:10.1175/WAF-D-11-00136.1
    Lin, Y. L., R. D. Farley, and H. D. Orville, 1983: Bulk
    parameterization of the snow field in a cloud model. J.
    Clim. Appl. Meteor., 22, 1065-1092.
    Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and
    S. A. Clough, 1997:Radiative transfer for inhomogeneous
    atmosphere: RRTM, a validated correlated-k model for the
    long-wave. J. Geophys. Res., 102 (D14), 16663–16682.
    Miyoshi, T., 2011: The gaussian approach to adaptive
    covariance inflation and its implementation with the
    Local Ensemble Transform Kalman Filter. Mon. Wea. Rev.,
    139, 1519-1535. doi:10.1175/2010MWR3570.1
    ——, and M. Kunii, 2011: The local ensemble transform Kalman
    filter with the Weather Research and Forecasting model:
    Experiments with real observations. Pure Appl. Geophys.,
    169, 321-333.
    Ott, E., and Coauthors, 2004: A local ensemble Kalman filter
    for atmospheric data assimilation. Tellus, 56A, 415–428.
    Snyder, C. and F. Zhang, 2003: Assimilation of simulated
    Doppler radar observations with an ensemble Kalman
    filter. Mon. Wea. Rev., 131, 1663-1677.
    Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M.
    Barker, W. Wang, and J. G. Powers, 2005: A description
    of the Advanced Research WRF version 2. NCAR Tech.
    Note TN-468_STR, 88 pp.
    Torn, R. D., G. J. Hakim, and C. Snyder, 2006: Boundary
    conditions for limited-area ensemble Kalman filters.
    Mon. Wea. Rev., 134, 2490–2502.
    ——, and ——, 2009: Ensemble data assimilation applied to
    RAINEX observations of Hurricane Katrina (2005). Mon.
    Wea. Rev., 137, 2817–2829.
    Weng, Y.*, and F. Zhang, 2012: Assimilating Airborne Doppler
    Radar Observations with an Ensemble Kalman Filter for
    Convection-permitting Hurricane Initialization and
    Prediction: Katrina (2005). Monthly Weather Review, 140,
    841-859.
    Weissmann, M., and Coauthors, 2011: The influence of
    assimilating dropsonde data on typhoon track and
    midlatitude forecasts. Mon. Wea. Rev., 139, 908–920.
    Wu, C.-C., G.-Y. Lien, J.-H. Chen, and F. Zhang, 2010:
    Assimilation of tropical cyclone track and structure
    based on the ensemble Kalman filter (EnKF). J. Atmos.
    Sci., 67, 3806–3822.
    ——,G.-Y. Lien, J.-H. Chen, and F. Zhang, 2010: Assimilation
    of tropical cyclone track and structure based on the
    ensemble Kalman filter (EnKF). J. Atmos. Sci., 67, 3806–
    3822.
    ——,K.-H. Chou, P. –H. Lin, S. D. Aberson, M. S. Peng, and T.
    Nakazawa, 2007b: The impact of dropwindsonde data on
    typhoon track forecasts in DOTSTAR.Weather and
    Forecasting, 22, 1157-1176.
    ——,P.-H. Lin, S. Aberson, T.-C. Yeh, W.-P. Huang, K.-H.
    Chou, J.-S. Hong, G.-C.Lu, C.-T. Fong, K.-C. Hsu, I-I
    Lin, P.-L. Lin, and C.-H. Liu, 2005: Dropwindsonde
    Observations for Typhoon Surveillance near the Taiwan
    Region(DOTSTAR): An Overview. Bulletin of the American
    Meteorological Society, 86, 787-790.
    Zeng, Z., Y. Duan, X. Liang, L. Ma and J. C. L. Chan, 2005:
    The effect of three-dimensional variational data
    assimilation of QuikScat data on the numerical
    simulation of typhoon track and intensity. Adv. Atmos.
    Sci., 22, 534-544.
    Yang S-C,E. Kalnay and T. Miyoshi, 2012: Accelerating the
    EnKF Spinup for Typhoon Assimilation and Prediction,
    Wea. Forecasting, 27, 878–897.
    ——, ——, Brian Hunt, 2012: Handling Nonlinearity in an
    Ensemble Kalman Filter:Experiments with the Three-
    Variable Lorenz Model. Mon. Wea. Rev., 140,2628–2646.

    QR CODE
    :::