| 研究生: |
Nugroho Aji Aji Nugroho |
|---|---|
| 論文名稱: |
二維移動顆粒床濾池兩階段模式下的速度場分析 Analysis of velocity fields in a two-stage mode of three-dimensional moving granular bed filter |
| 指導教授: |
蕭述三
Shu-San Hsiau |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 能源工程研究所 Graduate Institute of Energy Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 三維移動式顆粒床過濾器 、兩級過濾 、流動型態 、速度分佈 、水平速度分佈 、垂直速度分佈 |
| 外文關鍵詞: | three-dimensional moving granular bed filter, two-stage filtration, flow pattern, velocity profile, horizontal velocity distribution, vertical velocity distribution |
| 相關次數: | 點閱:19 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
發電廠和許多工廠的粉塵廢氣長期污染空氣,危害人類健康。這個問題引起了全世界的嚴重關注。為了解決它,已經提出了許多過濾技術。作為一種很有前途的過濾技術,移動式顆粒床過濾器(MGBF)具有簡單,高效,低成本和耐高壓的優點,已廣泛用於具有復雜成分的高溫煙氣的過濾。為了使刷新的砂過濾優化,兩種顆粒的大小在一過濾容器中已被研究。由於一個被設計的流動校正單元,使由粗及細組成的矽砂獲得停滯區最小化。顆粒床過濾器設計的幾何形狀會極大地影響應力分佈。過濾床中的應力分佈可通過流動型態研究方法進行研究。先前的研究進行了可顯示停滯區域的流動型態。然而,基於這種設計理論的兩種尺寸的過濾顆粒質量流量容器的應力分佈尚未在三維MGBF上進行研究。在這項研究中,將介紹不同質量流率下的速度分佈和水平速度分佈。評估了在三維交錯流中移動式顆粒床過濾器的流動型態,以獲得顆粒床過濾器中矽砂流動的速度分佈。在粗砂和細砂中建造追踪層以獲得清晰的流動型態結果。這些流動型態測試受到粗砂和細砂質量流率差異的影響。由於不同的質量流量配置,結果發現了不同的現象。研究結果表明,兩級過濾的最佳設計可降低粗砂和細砂的質量流量至330 g/min。
The dusty exhaust gases from power plants and many industrial plants pollute the air chronically and endanger human health. This problem gained serious concern all over the world. Numerous filtration advances have been investigated in order to deal with it. As a reliable filtration innovation, the Moving Granular Bed Filter (MGBF) has been broadly utilized within the filtration of high-temperature flue gas with complex chemical structures with its focal points of straightforwardness, high effectiveness, economical friendly, and good pressure resistance. Two granular sizes in a channel have been researched in order to optimize refreshed sand filtering. The flow-corrective insert has been designed to pass through the two types of silica grains consisted of coarse sand and fine sands to get a minimized stagnant zone. The geometry of the bed filter design greatly affects the stress distribution. The stress distribution in a filter bed can be investigated by means of flow pattern investigation. Previous research conducted a flow pattern study that can show a stagnant zone. Nevertheless, the stress distribution from this design theory of two sizes filter granules mass flow vessel has not investigated on three-dimensional MGBF. In this study, velocity profiles and horizontal velocity distribution in different mass flow rates will be presented. The flow patterns in a three-dimensional cross-flow moving granular bed filter were evaluated in order to get the velocity profile of the sand flow in a bed filter. Tracing layers in both coarse and fine sand were constructed to obtain clear flow pattern results. These flow pattern tests were influenced by the difference in mass flow rates in both coarse and fine sand. The results found different phenomena due to different mass flow rate configurations. The findings revealed that the optimal design for two-stage filtration diminished the mass flow rate of 330 g/min for both coarse sand and fine sand.
Xiao G, Wang X, Zhang J, et al., Granular bed filter: A promising technology for hot gas clean-up. Powder Technol (2013) 244:93–9.
Henriquez V, Macias-Machin A., Hot gas filtration using a moving bed heat exchanger-filter. Chem Eng Process (1997) 36:353–61.
Bai JC, Wu SY, Lee AS, et al., Filtration of dust in a circulating granular bed filter with conical louver plates (CGBF-CLPs). J Hazard Mater (2007) 142(324):331.
Chen YS, Chyou YP, Li SC., Hot gas clean-up technology of dust particulates with a moving granular bed filter. Appl Therm Eng (2014) 74:146–55.
Newby RA, Bannister RL., Advanced hot gas cleaning system for coal gasification process. J Eng Gas Turbines Power (1994) 117:608–16.
Gao S, Zhang D, Fan Y, et al., A novel gas solids separator scheme of coupling cyclone with circulating granular bed filter. J Hazard Mater (2019) 362:403–11.
Wang FL, He YL, Tang SZ, et al., Particle filtration characteristics of typical packing granular filters used in hot gas clean-up. Fuel (2018) 234:9–19.
Wang FL, He YL, Tang SZ, et al., Real-time particle filtration of granular filters for hot gas clean-up. Fuel (2019) 237:308–19.
Guan L, Gu Z, Yuan Z, et al., Numerical study on the penetration of ash particles in a three-dimensional randomly packed granular filter. Fuel (2016) 163:122–8.
Shi KY, Yang GH, Huang S, et al., Study on filtering characteristics of aerosol particulates in powder-grain dual-layer granular bed. Powder Technol (2015) 272:54–63.
Xiao GH, Hua Yang G, Yang Q, et al., Effect of filter layer thickness on the filtration characteristics of dual layer granular beds. Powder Technol (2018) 335:344–53.
Tian SR, Yang GH, Li Zhen, et al., Cascade filtration properties of a dual-layer granular bed filter. Powder Technol (2016) 301:545–56.
Yu YS, Tao YB, Ma Z, et al., Experimental study and optimization on filtration and fluid flow performance of a granular bed filter. Powder Technol (2018) 333:449–57.
Hu FX, Yang GH, Ding GZ, et al., Experimental study on catalytic cracking of model tar compounds in a dual layer granular bed filter. Appl Energy (2016) 170:47–57.
Wenzel BM, Porciúncula CB, Marcilio NR, et al., Filtration of dust in an intermittent moving granular bed filter: performance and modeling. Sep Purif Technol (2014) 133:108–19.
Chen YS, Hsiau SS, Lai SC, et al. Filtration of dust particulates with a moving granular bed filter. J Hazard Mater (2009) 171:987–94.
El-Hedok IA, Whitmer L, Brown RC, The influence of granular flow rate on the performance of a moving bed granular filter. Powder Technol (2011) 214:69–76.
Chen YS, Hsiau SS, Hsu CJ, et al,. Influence of operational parameters on the performance of gas clean-up technology with a moving granular bed filter. Energy (2017) 139:842–52.
Liu B, Zhou W, Tan P, et al., Dynamic granular bed and its gas-solid separation process. Powder Technol (2016) 301:387–95.
Chang, C.W., Hsiau, S.S., Chen, Y.S., et al., Study of Flow Patterns in Two-Stage Mode of Moving Granular Bed Filter (2017) Aerosol Air Qual. Res. 17: 2691-2704.
He Y, Xu Y, Pang Y, et al., Regulatory policy to promote renewable energy consumption in China: Review and future evolutionary path. Renewable Energy. (2016) Apr 1;89:695-705.
BP. BP World Energy Statistics Yearbook (2018) https://www.bp. com.
T. Bakirtas, A. Akpolat, The relationship between energy consumption, urbanization, and economic growth in new emerging-market countries, Energy 147 (2018) 110–121.
J. Lan, A. Malik, M. Lenzen, et al., A structural decomposition analysis of global energy footprints, Appl. Energy 163 (2016) 436–451.
M. Li, W. Tao, Review of methodologies and polices for evaluation of energy efficiency in high energy-consuming industry, Appl. Energy 187 (2017) 203–215.
H. Xi, Y. He, J. Wang, et al., Transient response of waste heat recovery system for hydrogen production and other renewable energy utilization, Int. J. Hydrogen Energy 44 (30) (2019) 15985–15996.
M. Li, Y. He, W. Tao, Modeling a hybrid methodology for evaluating and forecasting regional energy efficiency in China, Appl. Energy 185 (2017) 1769–1777.
M. Li, S. Tang, F. Wang, et al., Gas-side fouling, erosion and corrosion of heat exchangers for middle/low temperature waste heat utilization: a review on simulation and experiment, Appl. Therm. Eng. 126 (2017) 737–761.
J. Yu, C. Li, F. Guo, et al., The pilot demonstration of a honeycomb catalyst for the DeNOx of low-temperature flue gas from an industrial coking plant, Fuel 219 (2018) 37–49.
R. Wang, G. Liu, R. Sun, et al., Emission characteristics for gaseous-and size-segregated particulate PAHs in coal combustion flue gas from circulating fluidized bed (CFB) boiler, Environ. Pollut. 238 (2018) 581–589.
J. Shao, Q. Ma, Z. Wang, et al., A superior liquid phase catalyst for enhanced absorption of NO2 together with SO2 after low temperature ozone oxidation for flue gas treatment, Fuel 247 (2019) 1–9.
R. Cai, L. Zhang, Y. Yan, Performance prediction of PM 2.5 removal of real fibrous filters with a novel model considering rebound effect, Appl. Therm. Eng. 111 (2017) 1536–1547.
G. Xiao, X. Wang, J. Zhang, et al., Granular bed filter: a promising technology for hot gas clean-up, Powder Technol. 244 (2013) 93–99.
S. Heidenreich, Hot gas filtration–A review, Fuel 104 (2013) 83–94.
G. Tardos, N. Abuaf, C. Gutfinger, Dust deposition in granular bed filters: Theories and experiments, J. Air Pollut. Control Association 28 (4) (1978) 354–363.
Y. Liu, Q. Li, X. Duan, et al., Thermodynamic analysis of a modified system for a 1000 MW single reheat ultra-supercritical thermal power plant, Energy 145 (2018) 25–37.
Y. Chen, Y. Chyou, S. Li, Hot gas clean-up technology of dust particulates with a moving granular bed filter, Appl. Therm. Eng. 74 (2015) 146–155.
S. Yang, I. Chung, S. Wu, An experimental study of the influence of temperature on char separation in a moving granular bed, Powder Technol. 228 (2012) 121–127.
M. Çarpinlioğlu, E. Özahi, A simplified correlation for fixed bed pressure drop, Powder Technol. 187 (1) (2008) 94–101.
Y. Chen, S. Hsiau, J. Smid, et al., Removal of dust particles from fuel gas using a moving granular bed filter, Fuel 182 (2016) 174–187.
L. Guan, Z. Gu, Z. Yuan, et al., Numerical study on the penetration of ash particles in a three-dimensional randomly packed granular filter, Fuel 163 (2016) 122–128.
L. Guan, Z. Yuan, Z. Gu, et al., Numerical simulation of ash particle deposition characteristics on the granular surface of a randomly packed granular filter, Powder Technol. 314 (2017) 78–88.
J. Chen, X. Li, X. Huai, Experimental study on the heat transfer of gas with coagulative particles flowing through a packed granular bed filter, Appl. Therm. Eng. 141 (2018) 906–912.
E.W. Schmidt, J.A. Gieseke, P. Gelfand, et al., Filtration theory for granular beds, Journal of the Air Pollution Control Association 28 (2) (1978) 143–146.
G. Tardos, E. Yu, R. Pfeffer, et al., Experiments on aerosol filtration in granular sand beds, J. Colloid Interface Sci. 71 (3) (1979) 616–621.
C. Zevenhoven, Particle charging and granular bed filtration for high temperature application[M], Delft University Press, Delft, 1992.
R. Brown, H. Shi, G. Colver, et al., Similitude study of a moving bed granular filter, Powder Technol. 138 (2–3) (2003) 201–210.
Y. Chen, S. Hsiau, H. Lee, et al., Filtration of dust particulates using a new filter system with louvers and sublouvers, Fuel 99 (2012) 118–128.
J. Smid, S. Hsiau, C. Peng, et al., Hot gas cleanup: new designs for moving bed filters, Filtr. Sep. 42 (10) (2005) 36–39.
I. El-Hedok, L. Whitmer, R.C. Brown, The influence of granular flow rate on the performance of a moving bed granular filter, Powder Technol. 214 (1) (2011) 69–76.
D. Rubenstein, M. Koehl, The mechanisms of filter feeding: some theoretical considerations, Am. Nat. 111 (981) (1977) 981–994.
W. Licht, The movement of aerosol particles, J. Soc. Cosmetic Chem. 23 (1972) 657–678.
J. Coury, K. Thambimuthu, R. Clift, Capture and rebound of dust in granular bed gas filters, Powder Technol. 50 (3) (1987) 253–265.
Y. Chen, S. Hsiau, J. Syu, et al., Clean coal technology on hot gas clean-up process with a moving granular bed filter, Fuel 248 (2019) 136–142.
Y. Yu, Y. Tao, Z. Ma, et al., Experimental study and optimization on filtration and fluid flow performance of a granular bed filter, Powder Technol. 333 (2018) 449–457.
H. Shi, G. Yang, Z. Yao, et al., Semi-coke powder filtration experiments using a dual layer granular bed filter, Adv. Powder Technol. 29 (12) (2018) 3257–3264.
S. Tian, G. Yang, Z. Li, et al., Cascade filtration properties of a dual-layer granular bed filter, Powder Technol. 301 (2016) 545–556.
S. Yin, Y. He, L. Wang, et al., Particulate flow characteristics in a novel moving granular bed, Powder Technol. 340 (2018) 217–226.
C. Hsu, S. Hsiau, Experimental study of the gas flow behavior in the inlet of a granular bed filter, Adv. Powder Technol. 22 (6) (2011) 741–752.
Y. Chen, S. Hsiau, S. Lai, et al., Filtration of dust particulates with a moving granular bed filter, J. Hazard. Mater. 171 (1–3) (2009) 987–994.
I. El-Hedok, L. Whitmer, R.C. Brown, The influence of granular flow rate on the performance of a moving bed granular filter, Powder Technol. 214 (1) (2011) 69–76.
L. Moldavsky, C. Gutfinger, A. Oron, et al., Effect of sonic waves on gas filtration by granular beds, J. Aerosol Sci. 57 (2013) 125–130.
Y. Chen, C. Hsu, S. Hsiau, et al., Clean coal technology for removal dust using moving granular bed filter, Energy 120 (2017) 441–449.
Y. Chen, S. Hsiau, C. Hsu, et al., Influence of operational parameters on the performance of gas clean-up technology with a moving granular bed filter, Energy 139 (2017) 842–852.
J. Chen, X. Li, X. Huai, Experimental study on the heat transfer of gas with coagulative particles flowing through a packed granular bed filter, Appl. Therm. Eng. 141 (2018) 906–912.
Y. Yu, Y. Tao, F. Wang, et al., Parameter study and optimization on filtration and resistance characteristics of granular bed filter, Adv. Powder Technol. 29 (12) (2018) 3250–3256.
A. Charvet, L. Wingert, N. Bardin-Monnier, et al., Multi-staged granular beds applied to the filtration of ultrafine particles: An optimization of collector diameters, Powder Technol. 342 (2019) 341–347.
S. Tian, G. Yang, Z. Li, et al., Cascade filtration properties of a dual-layer granular bed filter, Powder Technol. 301 (2016) 545–556.
H. Shi, G. Yang, Z. Yao, et al., Semi-coke powder filtration experiments using a dual layer granular bed filter, Adv. Powder Technol. 29 (12) (2018) 3257–3264.
Schulze, D., Powders and Bulk Solids. Springer Berlin Heidelberg New York (2008).
Schulze, D., Powder and bulk solids, 3rd. Ed. Springer-Verlag (2014).
Schulze, D., Loads in silo cells. (German code) (1987). DIN 1055 Teil 6
Kwade. A., D. Schulze, and J. Schwedes: The direct measurement of the horizontal load ratio; Beton- und Stahlbetonbau 89 (1994) 3, pp. 58-63 and 89 (1994) 4, pp. 117-119.
Kwade. A., D. Schulze, and J. Schwedes: Determination of
the Stress Ratio in Uniaxial Compression Tests; powder handling & processing 6 (1994) 1, pp. 61-65 and 6 (1994) 2, pp. 199-203.
EN 1991-4:2006: Eurocode 1: Actions on structures – Part 4: Silos and tanks (2006).
Janssen, H.A.: Experiments on grain pressure in silo cells; Ztg. Ver. dt. Ing. 39 (1895), pp. 1045–1049.
Schulze, D.: The Characterization of Bulk Solids for Silo Design and Flowability Tests, AT-Aufbereitungstechnik 39 (1998) 2, pp. 47-57.
Schulze, D., and A. Wittmaier: Flow properties of highly dispersed powders at very small consolidation stresses; Chem. Eng. Technol. 26 (2003) 2, pp. 133-137.
Schulze, D.: Silo Stress Tool; Program for the assessment of stresses in silos, download at www.dietmar-schulze.de.
Kaldenhoff, M.: Full scale experiences with flow funnel; Proc. Int. Ass. for Shell and Spatial Structures (IASS) Symposium 2009, Valencia (2009), pp. 77–89.
Lippold, D., and J. Harder: Analysis and design of silo walls; World Cement 35 (2004), pp. 63-68.
R Shimada, T Kono, K Masuda, Y Komoda. The numerical analysis of particle-size distribution of clusters in shear flow at one-dimensional closed system and three-dimensional open system. Advanced Powder Technology 30 (2019) 774–78