跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王維彤
Wei-Tung Wang
論文名稱: 基於生成式人工智慧與擴增實境之科學實驗學習平台建置與成效分析
Design and Effectiveness Analysis of a Science Experiment Learning Platform Based on Generative Artificial Intelligence and Augmented Reality
指導教授: 劉晨鐘
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系
Department of Computer Science & Information Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 141
中文關鍵詞: 生成式人工智慧擴增實境科學實驗認知負荷內在動機自我效能
外文關鍵詞: Generative Artificial Intelligence, Augmented Reality, Science Experiment, Cognitive Load, Intrinsic Motivation, Self-Efficacy
相關次數: 點閱:104下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著擴增實境與人工智慧技術的快速發展,教育領域開始探索其在實驗教學中的應用潛力,特別是在提升學生探究能力與概念理解方面展現出顯著成效。本研究旨在建置一套融合生成式人工智慧與擴增實境技術的科學實驗學習系統,並探討其對中學生科學學習成效之影響。系統以微軟HoloLens 2頭戴式裝置為基礎,搭配實體光學儀器操作,讓學生得以在真實空間中觀察隨儀器移動的虛擬光線路徑變化,並透過生成式 AI 教學機器人即時獲得學習引導與回饋。系統設計亦融合 Kolb 經驗學習理論,依據「具體經驗」、「反思觀察」、「抽象概念化」與「應用驗證」四個階段,引導學生進行完整的學習歷程。
    為驗證本系統之有效性,本研究採準實驗設計,邀請某國中七年級學生共 57 人參與,分為AI 引導學習組(28 人)與單人自主學習組(29 人)。兩組皆接受相同課程與教學內容,單人自主學習組在不具人工智慧輔助的擴增實境環境中進行光學實驗學習;AI 引導學習組則使用本系統輔助進行光學實驗與概念學習。資料收集包含學習成效前後測、學習動機與自我效能問卷、以及學生行為紀錄分析,以瞭解系統在不同層面的影響。
    研究結果顯示,AI 引導學習組學生在整體學習成效上有顯著提升,顯著優於自我學習組。然而,在內在動機與自我效能方面,雖有提升趨勢,但未達統計顯著水準。進一步分析發現,AI 引導學習組學生在抽象概念理解與探究操作策略方面的進步幅度明顯。此外,行為分析亦發現,AI 引導學習組學生展現出更多主動操作與反思性思考行為,顯示 AI 引導能有效促進學生由具體經驗轉化為高階概念理解,並應用於問題解決情境中,顯現出本系統在教學互動性與學習成效提升上的應用潛力。


    With the rapid advancement of augmented reality (AR) and artificial intelligence (AI) technologies, the education sector has begun exploring their potential applications in experimental teaching, particularly in enhancing students' inquiry skills and conceptual understanding. This study aims to develop a science experiment learning system that integrates generative AI and AR technologies, and to investigate its impact on middle school students' science learning outcomes. The system is based on the Microsoft HoloLens 2 head-mounted device, combined with hands-on manipulation of physical optical instruments, enabling students to observe and manipulate virtual light paths in a real-world environment. Through interactions with a generative AI chatbot, students receive real-time guidance and feedback. The system is also designed in accordance with Kolb's experiential learning theory, guiding students through the four stages of "concrete experience," "reflective observation," "abstract conceptualization," and "active experimentation."
    To evaluate the effectiveness of the system, a quasi-experimental design was adopted. A total of 57 seventh-grade students from a junior high school participated in the study, divided into an AI-guided learning group (28 students) and an individual self-learning group (29 students). Both groups received the same curriculum and instructional content. The individual self-learning group conducted optical experiments using an AR environment without AI support, while the AI-guided group used the proposed system to engage in optical experiments and conceptual learning. Data collection included pre- and post-tests of learning performance, questionnaires on learning motivation and self-efficacy, and behavioral log analyses to examine the system's impact on multiple dimensions.
    The results indicated that the AI-guided learning group demonstrated a statistically significant improvement in overall learning performance, outperforming the self-learning group. However, while there was an upward trend in intrinsic motivation and self-efficacy, these differences did not reach statistical significance. Further analysis revealed that the AI-guided group showed notable gains in abstract conceptual understanding and inquiry-based operational strategies. Additionally, behavioral analysis showed that students in the AI-guided group exhibited more proactive manipulation and reflective thinking behaviors. These findings suggest that AI guidance effectively facilitates the transformation from concrete experiences to higher-order conceptual understanding and application in problem-solving contexts, highlighting the system's potential in enhancing instructional interactivity and learning effectiveness.

    摘要 i Abstract ii 致謝 iv 目錄 vi 圖目錄 x 表目錄 xi 第一章 緒論 1 1.1研究背景與動機 1 1.2 研究目的與問題 2 1.3 名詞解釋 3 1.3.1 擴增實境(Augmented Reality, AR) 3 1.3.2 生成式人工智慧(Generative Artificial Intelligence) 3 1.3.3 經驗式學習理論(Experiential Learning Theory) 4 1.3.4 認知負荷(Cognitive Load) 4 1.3.5 內在動機(Intrinsic Motivation) 4 1.3.6 自我效能(Self-Efficacy) 5 1.3.7 滯後序列分析(Lag Sequential Analysis, LSA) 5 1.4 論文架構 6 第二章 文獻探討 7 2.1 生成式人工智慧於學習環境中的應用與角色 7 2.2 擴增實境與生成式人工智慧融合於科學探究學習的應用 8 2.3 生成式AI與擴增實境融合對學習認知負荷之影響 11 2.4 生成式AI與擴增實境對學習動機之影響 13 第三章 系統設計 15 3.1 系統特色 15 3.2 系統介紹 16 3.2.1 實體光學儀器 16 3.2.2 HoloLens 2 17 3.2.3 AI輔助光學實驗學習應用程式 18 3.2.3.1 基本功能(光路開關與輔助資訊) 19 3.2.3.2 AI機器人設計 20 3.3 系統架構 21 第四章 研究方法 23 4.1 研究流程 23 4.2 研究對象 25 4.3 實驗設計 26 4.4 研究工具 27 4.4.1 光學概念學習單 28 4.4.2 光學概念測驗 29 4.4.3 認知負荷問卷 30 4.4.4 學習動機問卷前、後測 31 4.4.4.1 內在動機 31 4.4.4.2 自我效能 32 4.5 資料蒐集與分析 32 4.5.1 學習成效 33 4.5.2 認知負荷 36 4.5.3 學習動機 37 4.5.4 擴增實境學習歷程紀錄與分析 39 第五章 研究結果與討論 41 5.1 學習成效分析 41 5.1.1光學概念學習單 41 5.1.2 光學概念測驗 44 5.1.2.1 光學概念測驗各小題 47 5.1.2.2 光學概念測驗選擇題 52 5.1.2.3 光學概念測驗畫圖題 55 5.2 認知負荷問卷分析 57 5.2.1 內在認知負荷 57 5.2.2 外在認知負荷 59 5.2.3 增生認知負荷 61 5.3 學習動機問卷分析 63 5.3.1 內在動機 63 5.3.2 自我效能 65 5.4 各變項間相關性分析 67 5.5 融合AI引導之擴增實境探究學習行為分析 70 5.5.1 學生行為特徵與時間分布分析 70 5.5.2 學生探究行為序列分析 75 5.6 AI引導下學生實驗操作個案分析 79 5.6.1 案例一:學生依照 AI 建議觀察 80 5.6.2 案例二:學生依照 AI 建議移動紙屏 83 5.6.3 案例三:學生依照AI建議觀察光路 85 5.6.4 案例四:學生向 AI 提問學習單題目 89 第六章 結論與建議 91 6.1 結論 91 6.1.1 相較於單純擴增實境學習環境,結合生成式 AI 教學機器人之擴增實境學習環境是否能提升學生在光學概念上的學習成效? 91 6.1.2 生成式 AI 教學機器人的引導是否會對學生的認知負荷造成影響? 93 6.1.3 引入生成式 AI 引導是否影響學生對科學探究的學習動機? 94 6.1.4 生成式AI引導如何影響學生科學探究行為與成效? 95 6.2 未來展望 97 參考文獻 99 附錄A 光學概念學習單 106 附錄B 光學概念測驗 109 附錄C 認知負荷問卷 112 附錄D 學習動機問卷(前測) 113 附錄E 學習動機問卷(後測) 114 附錄F AI教學機器人Prompt 115

    Akçayır, M., & Akçayır, G. (2017). Advantages and challenges associated with augmented reality for education: A systematic review of the literature. Educational research review, 20, 1-11.
    Anuar, S., Nizar, N., & Ismail, M. A. (2021). The impact of using augmented reality as teaching material on students' motivation. Asian Journal of Vocational Education And Humanities, 2(1), 1-8.
    Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S., & MacIntyre, B. (2001). Recent advances in augmented reality. IEEE computer graphics and applications, 21(6), 34-47.
    Bakeman, R., & Gottman, J. M. (1997). Observing interaction: An introduction to sequential analysis. Cambridge university press.
    Bandura, A., & Wessels, S. (1997). Self-efficacy (pp. 4-6). Cambridge: Cambridge University Press.
    Billinghurst, M., & Duenser, A. (2012). Augmented reality in the classroom. Computer, 45(7), 56-63.
    Billinghurst, M., Clark, A., & Lee, G. (2015). A survey of augmented reality. Foundations and Trends® in Human–Computer Interaction, 8(2-3), 73-272.
    Buchner, J., Buntins, K., & Kerres, M. (2022). The impact of augmented reality on cognitive load and performance: A systematic review. Journal of Computer Assisted Learning, 38(1), 285-303.
    Cai, S., Wang, X., & Chiang, F. K. (2014). A case study of Augmented Reality simulation system application in a chemistry course. Computers in human behavior, 37, 31-40.
    Chen, L., Chen, P., & Lin, Z. (2020). Artificial intelligence in education: A review. Ieee Access, 8, 75264-75278.
    Chiang, T. H., Yang, S. J., & Hwang, G. J. (2014). An augmented reality-based mobile learning system to improve students’ learning achievements and motivations in natural science inquiry activities. Journal of Educational Technology & Society, 17(4), 352-365.
    Chiu, T. K. (2024). The impact of Generative AI (GenAI) on practices, policies and research direction in education: A case of ChatGPT and Midjourney. Interactive Learning Environments, 32(10), 6187-6203.
    Cohen, J. (2013). Statistical power analysis for the behavioral sciences. routledge.
    Dai, C. P., Ke, F., Pan, Y., Moon, J., & Liu, Z. (2024). Effects of artificial intelligence-powered virtual agents on learning outcomes in computer-based simulations: A meta-analysis. Educational Psychology Review, 36(1), 31.
    Deng, R., Jiang, M., Yu, X., Lu, Y., & Liu, S. (2025). Does ChatGPT enhance student learning? A systematic review and meta-analysis of experimental studies. Computers & Education, 227, 105224.
    Duncan, T. G., & McKeachie, W. J. (2005). The making of the motivated strategies for learning questionnaire. Educational psychologist, 40(2), 117-128.
    Duncan, T., Pintrich, P., Smith, D., & Mckeachie, W. (2015). Motivated strategies for learning questionnaire (MSLQ) manual. University of Michigan, National Center for Research to Improve Postsecondary Teaching and Learning. https://doi. org/10.13140/RG. 2.1.2547.6968.
    Dunleavy, M., & Dede, C. (2013). Augmented reality teaching and learning. Handbook of research on educational communications and technology, 735-745.
    Dunleavy, M., Dede, C., & Mitchell, R. (2009). Affordances and limitations of immersive participatory augmented reality simulations for teaching and learning. Journal of science Education and Technology, 18, 7-22.
    Gelana, F., & Campbell, A. (2024, January). The Possibilities of AI and Augmented Reality in Education. In 2024 IEEE International Conference on Consumer Electronics (ICCE) (pp. 1-4). IEEE.
    George, D. and Mallery, M. (2010) SPSS for Windows Step by Step: A Simple Guide and Reference, 17.0 Update, 10th Edition, Pearson, Boston
    Gunturu, A., Jadon, S., Zhang, N., Faraji, M., Thundathil, J., Ahmad, T., ... & Suzuki, R. (2024). RealitySummary: Exploring On-Demand Mixed Reality Text Summarization and Question Answering using Large Language Models. arXiv preprint arXiv:2405.18620.
    Hadie, S. N., & Yusoff, M. S. (2016). Assessing the validity of the cognitive load scale in a problem-based learning setting. Journal of Taibah University Medical Sciences, 11(3), 194-202.
    Hair, J. F. (2009). Multivariate data analysis.
    Hashemyolia, S., Asmuni, A., Ayub, A. F. M., Daud, S. M., & Shah, J. A. (2015). Motivation to use self-regulated learning strategies in learning management system amongst science and social science undergraduates. Asian Social Science, 11(3), 49.
    Holmes, W. (2019). Artificial intelligence in education. In Encyclopedia of education and information technologies (pp. 1-16). Springer, Cham.
    Holmes, W., Bialik, M., & Fadel, C. (2019). Artificial intelligence in education promises and implications for teaching and learning. Center for Curriculum Redesign.
    Kamalov, F., Santandreu Calonge, D., & Gurrib, I. (2023). New era of artificial intelligence in education: Towards a sustainable multifaceted revolution. Sustainability, 15(16), 12451.
    Kasneci, E., Seßler, K., Küchemann, S., Bannert, M., Dementieva, D., Fischer, F., ... & Kasneci, G. (2023). ChatGPT for good? On opportunities and challenges of large language models for education. Learning and individual differences, 103, 102274.
    Khan, T., Johnston, K., & Ophoff, J. (2019). The impact of an augmented reality application on learning motivation of students. Advances in Human‐Computer Interaction, 2019(1), 7208494.
    Kolb, David. (1984). Experiential Learning: Experience As The Source Of Learning And Development.
    Law, E. L. C., & Heintz, M. (2021). Augmented reality applications for K-12 education: A systematic review from the usability and user experience perspective. International Journal of Child-Computer Interaction, 30, 100321.
    Lee, D., Arnold, M., Srivastava, A., Plastow, K., Strelan, P., Ploeckl, F., ... & Palmer, E. (2024). The impact of generative AI on higher education learning and teaching: A study of educators’ perspectives. Computers and Education: Artificial Intelligence, 6, 100221.
    Leppink, J., & Van den Heuvel, A. (2015). The evolution of cognitive load theory and its application to medical education. Perspectives on medical education, 4, 119-127.
    Loewenthal, K.M., & Lewis, C.A. (2001). An Introduction to Psychological Tests and Scales (2nd ed.). Psychology Press.
    Nunnally, J. C. (1978). Psychometric Theory: 2d Ed. McGraw-Hill.
    Pajares, F. (1997). Current directions in self-efficacy research. Advances in motivation and achievement, 10(149), 1-49.
    Pintrich, P. R. (1991). A manual for the use of the Motivated Strategies for Learning Questionnaire (MSLQ).
    Pintrich, P. R., & De Groot, E. V. (1990). Motivational and self-regulated learning components of classroom academic performance. Journal of educational psychology, 82(1), 33.
    Salinas-Navarro, D. E., Vilalta-Perdomo, E., Michel-Villarreal, R., & Montesinos, L. (2024). Designing experiential learning activities with generative artificial intelligence tools for authentic assessment. Interactive Technology and Smart Education, 21(4), 708-734.
    Siemens, G. (2013). Learning analytics: The emergence of a discipline. American Behavioral Scientist, 57(10), 1380-1400.
    Stadler, M., Bannert, M., & Sailer, M. (2024). Cognitive ease at a cost: LLMs reduce mental effort but compromise depth in student scientific inquiry. Computers in Human Behavior, 160, 108386.
    Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive science, 12(2), 257-285.
    Sweller, J., Ayres, P., Kalyuga, S., Sweller, J., Ayres, P., & Kalyuga, S. (2011). Altering element interactivity and intrinsic cognitive load. Cognitive load theory, 203-218.
    Thees, M., Kapp, S., Strzys, M. P., Beil, F., Lukowicz, P., & Kuhn, J. (2020). Effects of augmented reality on learning and cognitive load in university physics laboratory courses. Computers in Human Behavior, 108, 106316.
    VanLehn, K. (2011). The relative effectiveness of human tutoring, intelligent tutoring systems, and other tutoring systems. Educational psychologist, 46(4), 197-221.
    Villegas-Ch, W., García-Ortiz, J., & Sánchez-Viteri, S. (2024). Educational advances in the metaverse: Boosting learning through virtual and augmented reality and artificial intelligence. IEEE Access.
    Wang, J., & Fan, W. (2025). The effect of ChatGPT on students’ learning performance, learning perception, and higher-order thinking: insights from a meta-analysis. Humanities and Social Sciences Communications, 12(1), 1-21.
    Wang, S., Wang, F., Zhu, Z., Wang, J., Tran, T., & Du, Z. (2024). Artificial intelligence in education: A systematic literature review. Expert Systems with Applications, 252, 124167.
    Wei, Z., Hassan, N. C., Hassan, S. A., Ismail, N., Gu, X., & Dong, J. Psychometric Properties of the Self-Efficacy Subscale of the Motivated Strategies for Learning Questionnaire (MSLQ) among Chinese Undergraduates.
    Wu, H. K., Lee, S. W. Y., Chang, H. Y., & Liang, J. C. (2013). Current status, opportunities and challenges of augmented reality in education. Computers & education, 62, 41-49.
    Yan, L., Sha, L., Zhao, L., Li, Y., Martinez‐Maldonado, R., Chen, G., ... & Gašević, D. (2024). Practical and ethical challenges of large language models in education: A systematic scoping review. British Journal of Educational Technology, 55(1), 90-112.
    Yardley, S., Teunissen, P. W., & Dornan, T. (2012). Experiential learning: transforming theory into practice. Medical teacher, 34(2), 161-164.
    Yilmaz, O. (2021). Augmented Reality in Science Education: An Application in Higher Education. Shanlax International Journal of Education, 9(3), 136-148.
    Zainudin, A. (2012). Structural equation modeling using AMOS graphic. Shah Alam: Universiti Teknologi MARA Publication Centre (UPENA).
    Zhai, X. (2023). ChatGPT for next generation science learning. XRDS: Crossroads, The ACM Magazine for Students, 29(3), 42-46.
    Zhai, X., Nyaaba, M., & Ma, W. (2024). Can generative AI and ChatGPT outperform humans on cognitive-demanding problem-solving tasks in science?. Science & Education, 1-22.

    QR CODE
    :::