跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳佑朋
Yu-Peng Chen
論文名稱: 槍機卡榫模流分析參數最佳化之研究
Optimization of process parameters for injection molding simulation of bolt catch
指導教授: 鍾禎元
Chen-Yuan Chung
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 109
中文關鍵詞: 金屬粉末射出成型(MIM)Moldex3D粉膠分離田口法
外文關鍵詞: Metal Injection Molding (MIM), Moldex3D, powder binder separation, Taguchi method
相關次數: 點閱:24下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 金屬粉末射出成型技術(MIM)其兼具高量產性與高複雜性的優勢使此製程在精密金屬零件的生產具有一席之地,射出成型階段的控制將是影響品質的重要因素,且其喂料是由黏結劑與粉末組成的特殊結構也使流變性質更難以掌握,尤其在流動過程中易產生粉膠分離之情形。本研究採用模流分析進行參數最佳化,針對產品生胚變形量,以及MIM特有的粉末濃度均勻性問題做改善。
    分析流程主要可分兩大階段,第一階段初步執行模擬並驗證產品短射實驗,以及製作射出成型之成型視窗;第二階段採用田口方法之實驗設計,針對變形量以及粉末濃度均勻性進行兩次的最佳化分析。
    第一階段分析結果顯示,產品實際射出與模擬之短射比對具有相似的趨勢,其結合線位置也可以有很好的預測。經Moldex3D實驗設計模組(DOE)最佳化結果顯示,針對翹曲變形量最大可達11.6%的改善率,其最佳化參數經實驗結果證明確實獲得改善,且實驗結果之改善率最大幅度來到57.78%,各區域之平均改善率也達到20%,再者,透過此最佳化參數配置相較原始組別可減少3秒的循環時間,對尺寸品質以及生產效率帶來明顯效益。
    粉末濃度均勻性最佳化前顯示,原始組別其粉末濃度百分比位於56.8169% 至62.7930%,平均粉末濃度為60.0313%;經最佳化後之組別其粉末濃度百分比位於58.6520% 至60.2703%,平均粉末濃度為60.0145%,其粉末濃度有更好的均勻性,說明了此參數調整可減少局部粉末堆積或粉體膠體分離之情形。


    Metal Injection Molding (MIM) has taken a place in the production of precision metal parts due to the advantages of high productivity and high complexity. Control of the injection molding stage, the quality, and the feedstock is the important issue. Especially for combination of feedstock which is composed of binder and metal powder also makes the rheology more difficult to know. The situation of powder binder separation often occurs during the filling process. In this study, molding simulation was used to optimize the parameters, and to improve the problem of green parts warpage and powder concentration uniformity for MIM.
    The analysis process is separated into two major stages. In the first stage, the initial simulation is performed to verify the short shot of experiments. Furthermore, the working window for injection molding is established. In the second stage, the experimental design of the Taguchi method is adopted to get the optimization for warpage and powder concentration uniformity.
    The results of first stage show that the experimental short shot similar to simulated one. In addition, the position of the welding line can also be well predicted. The optimization results of the Moldex3D Design of Expert (DOE) show that the maximum improvement on warpage achieves 11.6%. When these optimized parameters are used in experiments, the maximum improvement on warpage can achieve 57.78%, and the average improvement achieves 20%. Moreover, the optimized parameters can reduce the cycle time of 3s compared with the original design, which brings significant benefits to the dimensional precision and production efficiency.
    Before optimization of powder concentration uniformity, the original powder concentration percentage was between 56.8169% and 62.7930% and its average powder concentration was 60.0313%. After optimization, the powder concentration percentage is between 58.6520% and 60.2703% and its average powder concentration is 60.0145%. Therefore, the powder concentration becomes uniform. In other words, this parameter adjustment can reduce the local powder accumulation or the powder binder separation.

    摘要 i Abstract ii 致謝 iv 目錄 v 圖目錄 viii 表目錄 xi 第一章 緒論 1 1-1 前言 1 1-2 研究動機 2 1-3 文獻回顧 3 1-4 研究目的與方法 9 1-4-1 研究目的 9 1-4-2 研究方法 9 1-5 論文架構 12 第二章 基本原理與理論模式 13 2-1 MIM製程技術 13 2-1-1 MIM製程簡介 13 2-1-2 MIM製程優劣性 15 2-1-3 MIM射料 16 2-2 MIM工程問題 17 2-3 MIM流變模型 18 2-4 粒子懸浮理論 19 2-5 實驗設計法(DOE) 20 第三章 實驗 23 3-1 產品簡介 23 3-2 材料簡介 24 3-2-1 金屬粉末原料 24 3-2-2 MIM射料 24 3-3 儀器與設備 29 3-3-1 射出成型機 29 3-3-2 射出模具 29 3-3-3 模溫機 30 3-3-4 非接觸式影像量測儀 31 3-4 模流分析軟體簡介 32 3-5 模型建構 32 3-6 建立實體網格 36 3-7 成型條件設置 42 3-8 短射驗證 48 3-9 成型視窗製作 49 3-10 DOE模組成型條件最佳化 51 3-10-1 DOE模組翹曲變形量最佳化 51 3-10-2 DOE模組粉末濃度分佈最佳化 56 第四章 結果與討論 58 4-1 短射驗證結果 58 4-2 成型視窗製作結果 61 4-3 DOE翹曲變形量最佳化結果 65 4-3-1 DOE翹曲變形量最佳化之模擬結果 65 4-3-2 DOE翹曲變形量最佳化之實驗結果 72 4-4 DOE粉末濃度最佳化結果 77 第五章 結論 88 1. 短射驗證與成型視窗分析 88 2. 翹曲變形量最佳化結果分析 89 3. 粉末濃度最佳化結果分析 89 4. 對文生真空科技之貢獻 90 參考文獻 91

    [1] “Metal Injection Moulding in the firearms industry: A global perspective,” PIM Int, vol. 8, no. 4, pp. 31-47, 2014.
    [2] R. M. German, K. F. Hens, and S.-T. P. Lin, “Key issues in powder injection molding,” American Ceramic Society Bulletin, vol. 70, no. 8, pp. 1294-1302, 1991.
    [3] K. Mori, and K. Osakada, “Finite element simulation of jetting behaviour in metal injection molding using remeshing scheme,” Finite elements in analysis and design, vol. 25, no. 3-4, pp. 319-330, 1997.
    [4] C. Hwang, and T. Kwon, “A full 3D finite element analysis of the powder injection molding filling process including slip phenomena,” Polymer Engineering & Science, vol. 42, no. 1, pp. 33-50, 2002.
    [5] R. Spina, “Optimisation of injection moulded parts by using ANN-PSO approach,” Journal of Achievements in Materials and Manufacturing Engineering, vol. 15, no. 1-2, pp. 146-152, 2006.
    [6] D. F. Heaney, and R. Spina, “Dimentional Variation in MIM Component,” Arabian J. Sci. Eng, vol. 34, pp. 147-157, 2009.
    [7] T. Barriere, B. Liu, and J. Gelin, “Analyses of powder segregation in MIM,” Metal Powder Report, vol. 57, no. 5, pp. 30-33, 2002.
    [8] M. Jenni, L. Schimmer, R. Zauner, J. Stampfl, and J. Morris, “Quantitative study of powder binder separation of feedstocks,” PIM Int, vol. 2, no. 4, pp. 50-55, 2008.
    [9] 鄭洲順, 曲選輝, 徐勤武, 李俏杰, and 劉健康, “粉末注射成型兩相流動三維數值模擬及粉末與黏結劑的分離,” 中國有色金屬學報, vol. 24, no. 1, pp. 122-129, 2014.
    [10] M. Thornagel, “Simulating flow can help avoid mould mistakes,” Metal Powder Report, vol. 65, no. 3, pp. 26-29, 2010.
    [11] M. Thornagel, “Injection moulding simulation: New developments offer rewards for the PIM industry,” Powder Injection Moulding International, vol. 6, no. 1, pp. 65-68, 2012.
    [12] G. Hartmann, and T. Gebauer, “MIM in the digital age: Simulation technologies to help the industry compete in the 21st century,” PIM Int, vol. 11, no. 3, pp. 49-57, 2017.
    [13] R. M. German, and A. Bose, Injection Molding of Metals and Ceramics, p. 15: Metal Powder Industries Federation, 1997.
    [14] R. German, “Powder Injection Molding-Design and Applications,” State College, PA, Innovative Material Solutions, pp. 193-194, 2003.
    [15] 許宏全, “316L 金屬射出成型製程最佳化之研究,” 國立高雄第一科技大學-機械與自動化工程研究所, 2008.
    [16] 有方廣洋原著, and 歐陽渭城編譯, 射出成型的不良對策, pp. 2.1-2.55: 全華科技圖書股份有限公司, 2007.
    [17] 科盛科技. "Moldex3D R15 Help."
    [18] J. F. Morris, and F. Boulay, “Curvilinear flows of noncolloidal suspensions: The role of normal stresses,” Journal of rheology, vol. 43, no. 5, pp. 1213-1237, 1999.
    [19] 李輝煌, 田口方法-品質設計的原理與實務: 高立圖書有限公司, 2004.
    [20] 周文祥, C-MOLD 射出成型模具設計, p. 163: 文京圖書出版, 2008.
    [21] C.-C. A. Chen, L. T. Vu, and Y.-T. Qiu, “Study on Injection Molding of Shell Mold for Aspheric Contact Lens Fabrication,” Procedia engineering, vol. 184, pp. 344-349, 2017.

    QR CODE
    :::