跳到主要內容

簡易檢索 / 詳目顯示

研究生: 劉士溥
Shih-pu Liu
論文名稱: 異金屬鈾-鑭系鍺酸化合物之合成、結構鑑定 與性質探討
Synthesis, Crystal Structure and Properties of Heterometallic Uranyl-Lanthanide Germanates
指導教授: 李光華
Kwang-Hwa Lii
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 90
中文關鍵詞: 助熔劑合成法鍺酸化合物光致放光單晶
外文關鍵詞: flux synthesis, germanate, uranium, photoluminescence, single crystal
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用助熔劑長晶法在高溫下以 KF-MoO3 作為助熔劑合成一個鈾-銪鍺酸化合物 K4[(UO2)Eu2(Ge2O7)2] (1)。以單晶 X 光繞射儀定出其結構及化學式,以及利用高溫固態合成法合成化合物 1 的純相以及等結構化合物 K4[(UO2)Sm2(Ge2O7)2] (2),並以粉末 X 光繞射圖譜比對理論圖譜確定樣品的純度做後續分析,例如:X 光能量散佈分析、光致放光光譜等物理性質的測量。
    化合物 1 為一具有三維鍺酸鹽骨架的新穎六價銪–三價銪鍺酸化合物,其結構擁有 EuO7 雙五角錐以共邊方式連接形成無限鏈狀,似 PaCl5 的鍵結形式,此晶體結構擁有不尋常的陽離子–陽離子作用力的異金屬連結 U=O – Eu。在室溫下進行放光光譜研究,由 5D0 →
    7F1 與 5D0 → 7F2 的相對強度可知 Eu3+ 發光中心位在非反轉中心上。
    偵測其所有的放光訊號衰退曲線發現是一致的,證實只有一種 Eu3+ 放光中心,其生命期約為 0.53 ± 0.03ms。在放光光譜 450 到 550 nm 沒有看到典型的 UO22+ 放光訊號,可以證明能量轉移到 Eu3+ 放光中心或是藉由非放光過程散失掉。
    化合物 2 為等結構化合物,針對化合物中心金屬的放光特性,同樣進行放光光譜研究,並對研究結果做進一步探討。


    A uranyl-europium germanate, K4[(UO2)Eu2(Ge2O7)2] (1), has been grown at high temperature from a KF-MoO3 flux and structurally characterized by single-crystal X-ray diffraction. The pure phase of 1 and the isostructural uranyl-samarium germanate, K4[(UO2)Sm2(Ge2O7)2] (2), have been synthesized by solid state method.
    Compound 1 is a new 3D framework uranium(VI)–europium(III)
    germanate. The structure contains PaCl5-type chains of edge-sharing EuO7 pentagonal bipyramids. The structure contains an unusual heterometallic U=O–Eu linkage. Photoluminescence studies show strong red emission at room temperature. The relative intensity of the 5D0 → 7F1 and 5D0 → 7F2 transitions confirms that the europium site lacks an inversion center. All of the emission lines show similar decay curves, which can be well-fitted by a single exponential decay function with a radiative lifetime of 0.53 ± 0.03 ms. No emission is observed in the region from 450 to 550 nm typical of the uranyl cation, indicating that, upon uranyl excitation, the energy is either transferred to the Eu3+ centers or lost to nonradiative processes.
    Compound 2 is an isostructural compound. The photoluminescence properties of 2 have also been studied.

    中文摘要................................................ i 英文摘要................................................ ii 謝誌.................................................... iii 目錄.................................................... iv 圖目錄.................................................. vi 表目錄.................................................. viii 附錄之表目錄............................................ ix 第一章 緒論............................................. 1 1-1 簡介 ............................................... 1 1-1-1 鈾化合物 ......................................... 1 1-1-2 鑭系金屬矽、鍺酸鹽 ............................... 8 1-1-3 鑭系元素發光原理 ................................. 13 1-1-4 判斷銪離子對稱環境 ............................... 16 1-2 合成方法 ........................................... 18 1-2-1 助熔劑長晶法 ..................................... 18 1-2-2 高溫固態反應 ..................................... 23 1-2-3 藥品一覽表 ....................................... 24 1-3 鑑定方法 ........................................... 25 1-3-1 儀器測量簡介 ..................................... 25 1-3-2 單晶 X 光繞射儀與解構分析 ........................ 26 1-3-3 粉末 X 光繞射儀 .................................. 30 1-3-4 X 光能量散佈分析 (EDX) ........................... 30 1-3-5 光譜裝置 ......................................... 31 1-4 研究成果 ........................................... 36 第二章 異金屬化合物..................................... 37 2-1 簡介 ............................................... 37 2-2 實驗部分 ........................................... 44 2-2-1 K4[(UO2)Eu2(Ge2O7)2] (1) 合成條件................. 44 2-2-2 K4[(UO2)Eu2(Ge2O7)2] (1) 純相合成................. 46 2-2-3 K4[(UO2)Sm2(Ge2O7)2] (2) 純相合成 ................ 47 2-2-4 K4[(UO2)Eu2(Ge2O7)2] (1) 單晶 X 光結構解析 ....... 48 2-2-5 粉末 X 光繞射實驗 ................................ 50 2-2-6 X 光能量散佈圖譜分析 ............................. 52 2-3 結果與討論 ......................................... 53 2-3-1 結構描述 ......................................... 53 2-3-2 發光性質分析 ..................................... 57 2-3-3 化合物 1 之放光訊號生命期 ........................ 64 第三章 結論............................................. 67 參考文獻................................................ 69 附錄.................................................... 73

    1. Burns, P. C. Rev. Mineral. 1999, 38, 23-90.
    2. Finch, R. J. M., T Rev. Mineral. 1999, 38, 24-179.
    3. Finch, R. J. B., E. C.; Finn, P. A.; Bates, J. K. Mater. Res. Soc. Symp. Proc. 1999, 556, 431-432.
    4. Stieff, L. R. S., T. W.; Sherwood, A. M. Science 1955, 121, 608-609.
    5. Wang, X.; Huang, J.; Jacobson, A. J. J. Am. Chem. Soc. 2002, 124, 15190-15191.
    6. Wang, X.; Huang, J.; Liu, L.; Jacobson, A. J. J. Mater. Chem. 2002, 12, 406-410.
    7. Huang, J.; Wang, X.; Jacobson, A. J. J. Mater. Chem. 2003, 13, 191-196.
    8. Chen, C.-S.; Lee, S.-F.; Lii, K.-H. J. Am. Chem. Soc. 2005, 127, 12208-12209.
    9. Chen, C.-S.; Chiang, R.-K.; Kao, H.-M.; Lii, K.-H. Inorg. Chem. 2005, 44, 3914-3918.
    10. Lin, C.-H.; Chiang, R.-K.; Lii, K.-H. J. Am. Chem. Soc. 2009, 131, 2068-2069.
    11. Renshaw, J. C.; Butchins, L. J. C.; Livens, F. R.; May, I.; Charnock, J. M.; Lloyd, J. R. Environ. Sci. Technol. 2005, 39, 5657-5660.
    12. Zhou, P.; Gu, B. Environ. Sci. Technol. 2005, 39, 4435-4440.
    13. Silva, R. J. N., H. Radiochim. Acta 1995, 70, 377-379.
    14. Burns, P. C. E., R. C.; Hawthorne, F. C. Can. Mineral. 1997, 35, 1551-1553.
    15. Burns, P. C. M., M. L.; Ewing, R. C. Can. Mineral. 1996, 34, 845-847.
    16. Lee, C.-S.; Wang, S.-L.; Lii, K.-H. J. Am. Chem. Soc. 2009, 131, 15116-15117. 70
    17. Nguyen, Q. B.; Liu, H.-K.; Chang, W.-J.; Lii, K.-H. Inorg. Chem. 2011, 50, 4241-4243.
    18. Lee, C.-S.; Lin, C.-H.; Wang, S.-L.; Lii, K.-H. Angew. Chem., Int. Ed. 2010, 49, 4254-4256.
    19. Hung, L.-I.; Wang, S.-L.; Chen, C.-Y.; Chang, B.-C.; Lii, K.-H. Inorg. Chem. 2005, 44, 2992-2994.
    20. Brandão, P.; Valente, A.; Philippou, A.; Ferreira, A.; Anderson, Michael W.; Rocha, J. Eur. J. Inorg. Chem. 2003, 2003, 1175-1180.
    21. Ferreira, A.; Ananias, D.; Carlos, L. D.; Morais, C. M.; Rocha, J. J. Am. Chem. Soc. 2003, 125, 14573-14579.
    22. Huang, M.-Y.; Chen, Y.-H.; Chang, B.-C.; Lii, K.-H. Chem. Mater. 2005, 17, 5743-5747.
    23. N.N. Greenwood; A. Earnshaw, Chemistry of the Elements, Butterworth Heinemann, 1997.
    24. Ananias, D.; Ferdov, S.; Paz, F. A. A.; Ferreira, R. A. S.; Ferreira, A.; Geraldes, C. F. G. C.; Carlos, L. D.; Lin, Z.; Rocha, J. Chem. Mater. 2008, 20, 205-212.
    25. Cascales, C.; Gutierrez-Puebla, E.; Iglesias, M.; Monge, M. A.; Ruiz-Valero, C.; Snejko, N. Chem. Commun. 2000, 0, 2145-2146.
    26. Dadachov, M. S.; Sun, K.; Conradsson, T.; Zou, X. Angew. Chem., Int. Ed. 2000, 39, 3674-3676.
    27. Li, H.; Eddaoudi, M.; Plévert, J.; O'Keeffe, M.; Yaghi, O. M. J. Am. Chem. Soc. 2000, 122, 12409-12410.
    28. Naunova, I. S. M., V.; Pobedimskaya, E. A. Geologiya 1973, 28, 102-104.
    29. Kharakh, E. A. C., A. V.; Belov, N. V. Kristallografiya 1970, 15, 1064-1065. 71
    30. 郭琬琳,陳宏凱,盧曉琪,鄭炳銘 科學發展 2005, 11.
    31. Carnall, W. T. G., G. L.; Rajnak, K.; Rana, R. S. J. Chem. Phys 1989, 90, 343-344
    32. Carlos, L. D.; Messaddeq, Y.; Brito, H. F.; Sá Ferreira, R. A.; de Zea Bermudez, V.; Ribeiro, S. J. L. Adv. Mater. 2000, 12, 594-598.
    33. Huber, G.; Syassen, K.; Holzapfel, W. B. Phys. Rev. 1977, 15, 5123-5128.
    34. Carlos, L. D.; Videira, A. L. L. Phys. Rev. 1994, 49, 11721-11728.
    35. Blasse, G. G., C. Luminescence Materials-Springer 1994.
    36. Byrappa, K. O., T. Crystal Growth Technology, William Andrew Inc.:New York 2003.
    37. 徐如人;龐文琴 無機合成與製備化學(Inorganic Synthesis and
    Preparative Chemistry) 2004.
    38. Elwell, D.; Scheel, H. J. Crystal Growth from High-Temperature Solutions, Academic Press: London 1975.
    39. West, A. R. Basic Solid State Chemistry, 2nd Ed., Wiley 2000.
    40. 王素蘭 科儀新知 民國九十四年二月第二十六卷第四期.
    41. He, X. M.; Craven, B. M. Acta Crystallogr. 1985, 41, 244-251.
    42. Knope, K. E.; de Lill, D. T.; Rowland, C. E.; Cantos, P. M.; de Bettencourt-Dias, A.; Cahill, C. L. Inorg. Chem. 2012, 51, 201-206.
    43. Okamoto, Y.; Ueba, Y.; Nagata, I.; Banks, E. Macromolecules 1981, 14, 807-809.
    44. Tanner, S. P.; Vargenas, A. R. Inorg. Chem. 1981, 20, 4384-4386.
    45. Maji, S.; Viswanathan, K. S. J. Lumines. 2009, 129, 1242-1248.
    46. Albrecht-Schmitt, T. E.; Almond, P. M.; Sykora, R. E. Inorg. Chem. 2003, 42, 3788-3795. 72
    47. Wang, S.; Diwu, J.; Alekseev, E. V.; Jouffret, L. J.; Depmeier, W.; Albrecht-Schmitt, T. E. Inorg. Chem. 2012, 51, 7016-7018.
    48. Sullens, T. A.; Jensen, R. A.; Shvareva, T. Y.; Albrecht-Schmitt, T. E. J. Am. Chem. Soc. 2004, 126, 2676-2677.
    49. Adelani, P. O.; Burns, P. C. Inorg. Chem. 2012, 51, 11177-11183.
    50. Tian, T.; Yang, W.; Pan, Q.-J.; Sun, Z.-M. Inorg. Chem. 2012, 51, 11150-11154.
    51. Arnold, P. L.; Hollis, E.; White, F. J.; Magnani, N.; Caciuffo, R.; Love, J. B. Angew. Chem., Int. Ed. 2011, 50, 887-890.
    52. Volkringer, C.; Henry, N.; Grandjean, S.; Loiseau, T. J. Am. Chem. Soc. 2012, 134, 1275-1283.
    53. Dodge, R. P. S., G. S.; Johnson, Q.; Elson, R. E. Acta Crystallogr. 1967, 22, 85-89.
    54. Lee, C.-S.; Liao, Y.-C.; Hsu, J.-T.; Wang, S.-L.; Lii, K.-H. Inorg. Chem. 2008, 47, 1910-1912.
    55. Cotton, S. In Lanthanide and Actinide Chemistry; John Wiley & Sons, Ltd: 2006,
    56. Bacce, E. D.; Pires, A. M.; Davolos, M. R. J. Alloys Compd. 2002, 344, 312-315.
    57. Chiang, P.-Y.; Lin, T.-W.; Dai, J.-H.; Chang, B.-C.; Lii, K.-H. Inorg. Chem. 2007, 46, 3619-3622
    58. Chen, P.-L.; Chiang, P.-Y.; Yeh, H.-C.; Chang, B.-C.; Lii, K.-H. Dalton Trans. 2008, 0, 1721-1726.

    QR CODE
    :::