跳到主要內容

簡易檢索 / 詳目顯示

研究生: 簡宏達
Hung-Ta Chien
論文名稱: 二維雙輸入雙輸出光子晶體分光器
2-D 2x2 Photonic Crystal Beamsplitter
指導教授: 陳啟昌
Chii-Chang Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 92
語文別: 英文
論文頁數: 58
中文關鍵詞: 光子晶體光子能隙分光器波導模態匹配
外文關鍵詞: mode matching, waveguides, beamsplitters, photonic bandgap, photonic crystals
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中,我們提出兩種二維雙輸入雙輸出光子晶體分光器。其結構由兩正交之光子晶體波導在正方晶格之中。兩波導相交處之結構被改變去控制電磁波的分流比例。空氣柱和介電質柱的光子晶體皆被研究,而且其機制也被討論。而以光子晶體形成的馬氏干涉儀的特性(強度調變器)也被研究。


    In this wok, we propose two novel two-dimensional photonic crystal beamsplitters with two input ports and two output ports. The structure consists of two orthogonal-crossing line defects in square lattice. The intersection of two orthogonal photonic crystal waveguides was modified to control the splitting ratio of the electromagnetic waves. The photonic crystal beamsplitters with air-holes and dielectric pillars are studied. The mechanisms of the light splitting in the photonic crystal beamsplitters are discussed. The characterization of the Mach-Zehnder interferometers (intensity modulator) using the photonic crystal beamsplitters are investigated.

    Contents Abstract Ⅰ Acknowledgements Ⅱ Content Ⅲ List of figures Ⅴ List of tables Ⅹ Chapter 1 Introduction 1.1 Photonic crystal 1 1.1.1 About photonic crystals 3 1.1.2 Defects 3 1.2 Photonic crystals components 4 1.2.1 Advantages of components using photonic crystal structure in integrated optics 4 1.2.2 Photonic crystal waveguides 4 1.2.3 Photonic crystals beamsplitters 6 Chapter 2 Research methods 2.1 Finite-difference time-domain (FDTD) and perfect match layer (PML) 8 2.2 Plane wave expansion (PWE) 16 2.3 Examples 17 Chapter 3 Simulation processes 3.1 Sturctures of the PC beamsplitters 19 3.1.1Dielectric pillars in air 22 3.1.2 Air holes on dielectric slabs 24 3.2 Techniques 25 3.2.1 Eliminating reflection of EM waves at the interfaces 25 3.2.2 Standing wave ratio (SWR) 27 3.2.3 Discrete Fourier transform (DFT) 27 3.2.4 Extinction ratio 28 3.2.5 Complex notation of EM fields 31 3.2.6 Poynting vector 32 3.3 Process to study the properties of beamsplitter 33 Chapter 4 Simulation result 4.1 Case A - insert a point scattering 36 4.2 Case B - modifying the size of the pillars at the corner 37 4.3 Application 40 Chapter 5 Discuss- The principle of beamsplitter 5.1 Mode matching 42 5.2 Deflection by scatterers 45 Chapter 6 Conclusions 46 Reference 49 Appendix A : Programs of Poynting 54 Appendix B : Programs of DFT 58

    REFERENCE
    1. E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059 (1987).
    2. S. John, “Strong localization of photons in certain dielectric superlattices,” Phys. Rev. Lett. 58, 2486 (1987).
    3. J. D. Joannopoulos, P. R. Villeneuve, “Photonic Crystals: Putting a new twist on light,” Nature 386, 143 (1997).
    4. E. Yablonovitch, “Photonic crystals: semiconductors of Light,” Scientific American 285, 35 (2001).
    5. A. R. Parker, V. L. Welch, D. Driver, N. Martini, “Structural colour: Opal anlogue discovered in a weevil,” Nature 426, 786 (2003).
    6. J. D. Joannopolos, “Self-assembly lights up,” Nature 414, 257 (2001).
    7. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53 (2000).
    8. P. V. Braun, P.Wiltzius, “Microporous materials: Electrochemically grown photonic crystals,” Nature 402, 603 (1999).
    9. N. Moll, G.L. Bona, “Comparison of three-dimensional photonic slab waveguides with two-dimensional photonic crystal waveguides: Efficient butt coupling into these photonic crystal waveguides,” J. Appl. Phys. 93, 4986 (2003).
    10. T. Bada, A. Motegi, T. Iwai, N. Fukaya, Y. Watanabe, A. Sakai, “Light Propagation Characteristics of Straight Single-Line-Defect Waveguides in Photonic Crystal Slabs Fabricated Into a Silicon-on-Insulator Substrate,” IEEE J. Quantum Electronics 38, 743 (2002).
    11. M.Lončar, J. Vučkovič, A. Scherer, “Methods for controlling positions of guided modes of photonic-crystal waveguides,” J. Opt. 18, 1362 (2001).
    12. A. Scherer, O. Painter, J. vuckovic, M. Loncar, T. Yoshie, “Photonic Crystals for Confining, Guiding, and Emitting Light,” IEEE trans Nanotechnology 1, 4 (2002).
    13. J. Moosburger, M. Kamp, A. Forchel, U. Oesterle, and R. Houdré, “Transmission spectroscopy of photonic crystal based waveguides with resonant cavities,” J. Appl.Phys. 92, 4791 (2002).
    14. G. Tayeb, D.Maystre, “Rigorous theoretical study of finite-size two dimensional photonic crystals doped by microcavities,” J. Opt. 14, 3323 (1997).
    15. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143 (1997).
    16. S. Noda, A Chutinan, M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608 (2002).
    17 M. Bayindir, E. Ozbay, “Band-dropping via coupled photonic crystal waveguides,” Opt. Express 10, 1279 (2002).
    18 M. Koshiba, “Wavelength Division Multiplexing and Demultiplexing With Photonic Crystal Waveguide Couplers,” IEEE J. Lightwave. Tech. 19, 733 (2001).
    19. A. Talneau, L. Le Gouezigou, N. Bouadma, “Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55mm,” Appl. Phys. Lett. 80, 547 (2002).
    20. G. P. Nordin, S. Kim, J.Cai, J. Jiang, “Hybrid integration of conventional waveguide and photonic crystal structures,” Opt. Express 10, 1334 (2002).
    21. T. Sondergaard, K. H. Dridi, “Energy flow in photonic crystal waveguides,” Phys. Rev. B 61, 15688 (2000).
    22. S. Boscolo, M. Midrio, “Y junctions in photonic crystal channel waveguides: high transmission and impendence matching,” Opt. Lett. 27, 1001 (2002).
    23. M. Bayindir, B. Temelkuran, E. Ozbay, “Photonic-crystal-based beam splitters,” Appl. Phys. Lett. 77, 3902 (2000).
    24. S. G. Johnson, C. Manolatou, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, H. A. Haus, “Elimination of cross talk in waveguide intersections,” Opt. Lett., 23, 1855 (1998).
    25. S. Lan, K. Kanamoto, T. Yang, S. Nishikawa, Y. Sugimoto, N. Ikeda, H. Nakamura, K. Asakawa, H. Ishikawa, “Similar role of waveguide bends in photonic crystal circuits and disordered defects in coupled cavity waveguides: An intrinsic problem in realizing photonic crystal circuits,” Phys. Rev. B 67, 115208 (2003).
    26. M. Tokushima, H. Kosaka, A. Tomita, H. Yamada, “Lightwave propagation through a 120o sharply bent single-line-defect photonic crystal waveguide,” Appl. Phys. Lett. 76, 952 (2000).
    27. A. Chutinan, M. Okano, S. Noda, “Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 80, 1698 (2002).
    28. S. Y. Lin, E. Chow, V. Hietala, P.R. Villenuve, J. D. Joannopoulos, “Experimental Demonstration of Guiding and Bending of Electromagnetic Waves in a Photonic Crystal,” Science 282, 274 (1998).
    29. A.Mekis, J. C. Chem, I. Kurland, S. Fan, P. R. Villeneuve, J. D. joannopoulos, “High transmission through Sharp Bends in Photonic Crystal Waveguides,” Phys. Rev. Lett. 77, 3787 (1996)
    30. K. Kawano, T. Kiton, “Introduction to Optical Waveguide Analysis: Solving Maxwell’s Equations and the Schrödinger Equation,” (WILEY, 2001) Chap. 6, 233.
    31. J. P. Berenger, “A Perfectly Matched Layer for the Absorption of Electromagnetic Waves,” J. Comput. Phys., 114, 185 (1994).
    32. M. Koshiba, “High-Performance Absorbing Boundary Condictions for Photonic Crystal Waveguide Simulations,” IEEE Microwave Wireless. Compon. Lett. 11, 152 (2001).
    33. K.S. Yee, ”Nurmerical solution of initial boundary value problems involving maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, p.302, 1966.
    34. K. Sakoda, “Optic Properties of Photonic Crystals,” (Springer, 2001), Chap 7.
    35. P. Sanchis, J. Martí, J. Blasco, A. Martínez, A. García, “Mode matching technique for highly efficient coupling between dielectric waveguides and planar photonic crystal circuits,” Opt. Express 10, 1391 (2002).
    36. C. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, “Tunable photonic crystals fabricated in Ⅲ-Ⅴ semiconductor slab waveguides using infiltrated liquid crystals,” Appl. Phys. Lett. 82, 2767 (2003).

    QR CODE
    :::