跳到主要內容

簡易檢索 / 詳目顯示

研究生: 邱价偉
Chieh-wei Chiu
論文名稱: 多項式模糊雙線性系統控制器設計—齊次李亞普諾夫法
Controller Design for Polynomial Fuzzy Bilinear Systems via Homogeneous Lyapunov Methods
指導教授: 羅吉昌
Ji-Chang Lo
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 90
中文關鍵詞: 雙線性模糊系統平方和狀態回授控制尤拉齊次多項式定理
外文關鍵詞: bilinear fuzzy systems, sum of squares, state feedback, Euler's Theorem for Homogeneous Function
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要是研究多項式模糊雙線性系統之狀態回授控制器設計,以泰勒級數建模得出模糊系統,並且使用齊次多項式李亞普諾夫函數(Lyapunov function)及其對時間變化率推導穩定條件,本論文將以兩種方法解決雙線性系統問題,第一種方法我們將雙線性項Nxu與Bu合併成一項,第二種控制方法我們以三角函數來描述。其中在連續系統中利用尤拉齊次多項式解決$V(x)$對時間微分所造成V(x)問題並建立齊次之李亞普諾夫函數,而離散系統中則使用非齊次之李亞普諾夫函數,
    其中系統向量x中不受控制力影響的系統狀態集合而成,即需假設系統為可控典型式(canonical controllable form),此限制才能使後續電腦模擬可行,內文將詳細說明。最後藉由電腦程式以平方和方法(Sum Of Squares)來檢驗模糊系統的穩定條件,並設計狀態回授控制器。


    The main contribution in this thesis is a state feedback controller design for polynomial fuzzy bilinear systems modeled by Taylor series. The stability is proved with homogeneous polynomial Lyapunov function. In this thesis, two methods to tackle the control problem of polynomial fuzzy bilinear systems are proposed. In the first method we combine the bilinear term Nxu into the Bu term. The second method is to describe control input with trigonometric functions. For continuous-time systems, we utilize the Euler's homogeneous polynomial theorem to solve the V(x) which is created by time derivative of V(x), and build the homogeneous Lyapunov function.In discrete-time systems, the non-homogeneous Lyapunov function
    state x is a collection of system states that are unaffected by control. This restriction is to avoid problems when doing simulation. The details will be described in this thesis. Finally in numerical simulations, we test the stability condition of the fuzzy systems via Sum Of Squares, and design the state feedback controllers.

    一.背景介紹...................1 1.1研究動機..................1 1.2文獻回顧...................2 1.3論文結構..................3 1.4符號標記..................4 1.5預備定理..................6 二.系統架構與主要定理.........11 2.1雙線線性模糊系統架構簡介..11 2.2狀態回售控制系統.........12 2.3主要定理.................12 2.3.1方法一................13 2.3.2方法二................18 三.模糊建模法及平方和檢驗法...29 3.1泰勒級數模糊法...........29 3.2平方和檢驗法.............32 3.3平方和檢驗法之方法一穩定條件.36 3.4平方和檢驗法之方法二穩定條件.38 四.電腦模擬..................40 4.1例題一..................40 4.1.1方法一...............44 4.1.2方法二...............47 4.2例題二..................50 4.2.1方法一...............51 4.2.2方法二...............54 4.3例題三..................57 4.3.1方法一...............58 4.3.2方法二...............61 4.4例題四..................64 4.4.1方法一...............65 4.4.2方法二...............69 五.結論與未來方向............73 5.1結論....................73 5.2未來方向................74 參考文獻.....................75

    [1] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications
    to modeling and control,” IEEE Transactions on Systems, Man, and Cybernetics,
    vol. SMC-15, pp. 116–132, Jan 1985.
    [2] M. Sugeno and G. Kang, “Structure identification of fuzzy model,” Fuzzy Sets and
    Systems, vol. 28, no. 1, pp. 15 – 33, 1988.
    [3] K. Tanaka and M. Sugeno, “Stability analysis and design of fuzzy control systems,”
    Fuzzy Sets and Systems, vol. 45, no. 2, pp. 135 – 156, 1992.
    [4] W. M. Haddad and D. S. Bernstein, “Explicit construction of quadratic lyapunov
    functions for the small gain, positivity, circle, and popov theorems and their application to robust stability. part ii: Discrete-time theory,” International Journal of
    Robust and Nonlinear Control, vol. 4, no. 2, pp. 249–265, 1994.
    [5] H. O. Wang, K. Tanaka, and M. F. Griffin, “An approach to fuzzy control of nonlinear
    systems: Stability and design issues,” IEEE transactions on fuzzy systems, vol. 4,
    no. 1, pp. 14–23, 1996.
    [6] K. Tanaka, T. Hori, and H. O. Wang, “A multiple lyapunov function approach to
    stabilization of fuzzy control systems,” IEEE Transactions on fuzzy systems, vol. 11,
    no. 4, pp. 582–589, 2003.
    [7] K. Tanaka, T. Hori, and H. O. Wang, “A fuzzy lyapunov approach to fuzzy control
    system design,” in Proceedings of the 2001 American Control Conference.(Cat. No.
    01CH37148), vol. 6, pp. 4790–4795, IEEE, 2001.
    [8] T. M. Guerra and L. Vermeiren, “Lmi-based relaxed nonquadratic stabilization conditions for nonlinear systems in the takagi–sugeno’s form,” Automatica, vol. 40, no. 5,
    pp. 823–829, 2004.
    [9] G. Feng, “Stability analysis of discrete-time fuzzy dynamic systems based on piecewise lyapunov functions,” IEEE Transactions on Fuzzy Systems, vol. 12, no. 1,
    pp. 22–28, 2004.
    [10] Y. Chen, H. Ohtake, K. Tanaka, W. Wang, and H. O. Wang, “Relaxed stabilization
    criterion for tȉs fuzzy systems by minimum-type piecewise-lyapunov-function-based
    75
    switching fuzzy controller,” IEEE Transactions on Fuzzy Systems, vol. 20, pp. 1166–
    1173, Dec 2012.
    [11] Y.-J. Chen, M. Tanaka, K. Tanaka, and H. O. Wang, “Stability analysis and regionof-attraction estimation using piecewise polynomial lyapunov functions: polynomial fuzzy model approach,” IEEE Transactions on Fuzzy systems, vol. 23, no. 4,
    pp. 1314–1322, 2015.
    [12] Y. Wei, J. Qiu, P. Shi, and H.-K. Lam, “A new design of h-infinity piecewise filtering
    for discrete-time nonlinear time- varying delay systems via t–s fuzzy affine models,”
    IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 47, no. 8,
    pp. 2034–2047, 2017.
    [13] K. Tanaka, H. Yoshida, H. Ohtake, and H. O. Wang, “A sum-of-squares approach
    to modeling and control of nonlinear dynamical systems with polynomial fuzzy systems,” IEEE Transactions on Fuzzy Systems, vol. 17, pp. 911–922, Aug 2009.
    [14] Y.-Y. CAO, J. LAM, and Y.-X. SUN, “Static output feedback stabilization: An ilmi
    approach,” Automatica, vol. 34, no. 12, pp. 1641 – 1645, 1998.
    [15] R. Palhares, D. C.W. Ramos, and P. L.D. Peres, “Alternative lmis characterization
    of 𝒽2 and central 𝒽∞ discrete-time controllers,” vol. 2, pp. 1495 – 1496
    vol.2, 01 1997.
    [16] G. Hilhorst, G. Pipeleers, W. Michiels, and J. Swevers, “Sufficient lmi conditions for
    reduced-order multi-objective h 2 / h ∞ control of lti systems,” European Journal
    of Control, vol. 23, pp. 17–25, 05 2015.
    [17] K. Tanaka, T. Ikeda, and H. O. Wang, “Fuzzy regulators and fuzzy observers: relaxed
    stability conditions and lmi-based designs,” IEEE Transactions on Fuzzy Systems,
    vol. 6, pp. 250–265, May 1998.
    [18] R. Palhares and P. L. D. Peres, “Optimal filtering schemes for linear discrete-time
    systems: A linear matrix inequality approach,” International Journal of Systems
    Science, vol. 29, pp. 587–593, 06 1998.
    [19] V. F. Montagner, R. C. L. F. Oliveira, P. L. D. Peres, and P. . Bliman, “Linear matrix
    inequality characterisation for h∞and h2guaranteed cost gain-scheduling quadratic
    stabilisation of linear time-varying polytopic systems,” IET Control Theory Applications, vol. 1, pp. 1726–1735, November 2007.
    [20] S. Prajna and A. P. and, “Nonlinear control synthesis by sum of squares optimization:
    a lyapunov-based approach,” in 2004 5th Asian Control Conference (IEEE Cat. No.
    04EX904), vol. 1, pp. 157–165 Vol.1, July 2004.
    [21] S. Prajna, A. Papachristodoulou, P. Seiler, and P. A. Parrilo, “New developments
    in sum of squares optimization and sostools,” in Proceedings of the 2004 American
    Control Conference, vol. 6, pp. 5606–5611 vol.6, June 2004.
    76
    [22] J. Xu, K.-Y. Lum, A. Loh, and L. Xie, “A sos-based approach to residual generators
    for discrete-time polynomial nonlinear systems,” pp. 372 – 377, 01 2008.
    [23] J. Xu, L. Xie, and Y. Wang, “Synthesis of discrete-time nonlinear systems: A sos
    approach,” in 2007 American Control Conference, pp. 4829–4834, July 2007.
    [24] K. Tanaka, H. Yoshida, H. Ohtake, and H. O. Wang, “Stabilization of polynomial
    fuzzy systems via a sum of squares approach,” in 2007 IEEE 22nd International
    Symposium on Intelligent Control, pp. 160–165, Oct 2007.
    [25] A. Chibani, M. Chadli, and N. B. Braiek, “A sum of squares approach for polynomial fuzzy observer design for polynomial fuzzy systems with unknown inputs,”
    International Journal of Control, Automation and Systems, vol. 14, pp. 323–330, Feb
    2016.
    [26] D. Saoudi, M. Chadli, C. Mechmeche, and N. Braiek, “Unknown input observer
    design for fuzzy bilinear system: An lmi approach,” Mathematical Problems in Engineering, vol. 2012, 12 2012.
    [27] S.-H. Tsai and T.-H. S. Li, “Robust fuzzy control of a class of fuzzy bilinear systems
    with time-delay,” Chaos, Solitons & Fractals, vol. 39, no. 5, pp. 2028 – 2040, 2009.
    [28] T.-H. Li, S.-H. Tsai, J.-Z. Lee, M.-Y. Hsiao, and C.-H. Chao, “Robust h∞ fuzzy
    control for a class of uncertain discrete fuzzy bilinear systems,” Systems, Man, and
    Cybernetics, Part B: Cybernetics, IEEE Transactions on, vol. 38, pp. 510 – 527, 05
    2008.
    [29] T. S. Li and S. Tsai, “T ndash;s fuzzy bilinear model and fuzzy controller design
    for a class of nonlinear systems,” IEEE Transactions on Fuzzy Systems, vol. 15,
    pp. 494–506, June 2007.
    [30] R. Takada, Y. Uchida, and J. Yoneyama, “Output feedback stabilization of takagisugeno fuzzy bilinear time-delay systems,” in 2012 IEEE International Conference
    on Fuzzy Systems, pp. 1–8, June 2012.
    [31] R. Takada, Y. Uchida, and J. Yoneyama, “Output feedback control design with guaranteed cost for fuzzy bilinear time-delay systems,” Applied Mathematical Sciences,
    vol. 7, pp. 1303–1318, 01 2013.
    [32] J. Lo and C. Lin, “Polynomial fuzzy observed-state feedback stabilization via homogeneous lyapunov methods,” IEEE Transactions on Fuzzy Systems, vol. 26, pp. 2873–
    2885, Oct 2018.
    [33] S. Prajna, A. Papachristodoulou, and P. A. Parrilo, “Introducing sostools: a general purpose sum of squares programming solver,” in Proceedings of the 41st IEEE
    Conference on Decision and Control, 2002., vol. 1, pp. 741–746 vol.1, Dec 2002.
    77
    [34] C. Ebenbauer, J. Renz, and F. Allgower, “Polynomial feedback and observer design
    using nonquadratic lyapunov functions,” in Proceedings of the 44th IEEE Conference
    on Decision and Control, pp. 7587–7592, Dec 2005.
    [35] S. Xu and J. Lam, “Robust h∞ control for uncertain discrete-time-delay fuzzy systems via output feedback controllers,” Fuzzy Systems, IEEE Transactions on, vol. 13,
    pp. 82 – 93, 03 2005.
    [36] A. Sala and C. AriÑo, “Polynomial fuzzy models for nonlinear control: A taylor
    series approach,” IEEE Transactions on Fuzzy Systems, vol. 17, pp. 1284–1295, Dec
    2009.
    [37] K. Tanaka, H. Ohtake, T. Seo, M. Tanaka, and H. O. Wang, “Polynomial fuzzy
    observer designs: A sum-of-squares approach,” IEEE Transactions on Systems, Man,
    and Cybernetics, Part B (Cybernetics), vol. 42, pp. 1330–1342, Oct 2012.
    [38] H. Zhang, C. Qin, B. Jiang, and Y. Luo, “Online adaptive policy learning algorithm forh∞state feedback control of unknown affine nonlinear discrete-time systems,” IEEE Transactions on Cybernetics, vol. 44, pp. 2706–2718, Dec 2014.

    QR CODE
    :::