跳到主要內容

簡易檢索 / 詳目顯示

研究生: 廖淑君
Zsu-Chuion Liao
論文名稱: GMR(共振波導)運用在基因晶片上DNA雜交之研究
Optical Label-Free Gene-Chip For DNA Hybridization by Guided-Mode Resonance
指導教授: 陳文逸
Wen-Yih Chen
楊宗勳
Tsung-Hsun Yang
張正陽
Jeng-Yang Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 96
語文別: 中文
論文頁數: 58
中文關鍵詞: DNA 晶片生物檢測器共振波導
外文關鍵詞: Biosensor, DNA hybridization, Guide-mode resonance
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目標要發展一系列光學檢測微流道系統(series of optical biosensor in micro-fluidic system) 置入具有微型化、表面奈微級結構的光學元件作為一基因快速檢測平台:GMR(guided-mode resonance),本元件利用半導體技術,製作一次波長光柵結構,並利用其產生的窄帶高反射率之效果,及其光柵表面區域之高敏感度,應用於共種生化反應,並設計一系列表面改質於晶片表面,使生物分子以共價鍵鍵結固定於晶片表面,並成功的以此光學即時量測系統即時監測整個反應過程,觀測是否有雜交反應。本光學式檢測系統具有以下優點:免標定(label free)、微型化(mini size)、可高通量(high through put)、易與其它半導體元件接合、高訊雜比(high quality)、高穩定性、即時偵測(real time)之優點。


    We used the guided-mode resonance (GMR) device to achieve the real-time detection on DNA hybridization process. The bulk-shift sensitivity is about 200 (nm/RIU) of the biosensor in the sandwich types of micro-fluidic system, and the detection limit is approximately 10-5 refraction index unit (RIU). We proposed a novel method to detect the different length of DNA hybridizations of DNA attached the chip surface respectively. Obviously, this optical biosensor shows its promising role in developing a real-time testing system which is with the most benefits of label free, high throughput, small size, and high sensitivity, etc.

    第一章 緒論..........................................1 1.1.1 生物晶片簡介.......................................3 1.1.2 基因晶片起源及發展概說............................4 1.2 基因檢測的檢測器及比較...........................9 1.3 GMR生物晶片發展現況...........................11 1.4 GMR 工作原理概論...............................14 1.5 實驗動機..........................................16 第二章 微流道GMR 晶片模擬設計與製程........18 2.1 GMR 晶片模擬與設計...............................18 2.2 微流道GMR量測系統的模擬與架設................20 2.3 GMR 晶片之黃光微影製程.........................23 第三章 量測實驗....................................26 3.1 Bulk shift-酒精實驗.................................27 3.1.1 使用藥品與實驗方法...............................27 3.2 Surface shift-固定化DNA 及DNA雜交實驗.........29 3.2.1 使用藥品及儀器....................................29 3.2.1.1 實驗藥品 ........................................29 3.2.1.2 實驗儀器 ........................................31 3.2.2 實驗方法...........................................31 3.2.2.1 DNA表面固定化-Surface modification............32 3.2.2.2 DNA 雜交實驗..................................33 第四章 實驗結果與驗證............................35 4.1 Bulk shift-酒精實驗..................................35 4.2 表面改質-Surface modification .......................37 4.3 即時偵測DNA Hybridization .........................40 第五章 結果討論....................................44 第六章 結論與未來展望............................51

    [1] H.G. van der Poel, “ Review Smart Drugs in Prostate Cancer, ” European Urology 45, 1–17 (2004).
    [2] 黃國華, “基因晶片與生物醫學, ”科學發展 381,64-69 (2004).
    [3] S. K. Arya, M. Datta and B. D. Malhotra, “Recent advances in cholesterol biosensor, ” Biosensors and Bioelectronics 23, 1083–1100 (2008).
    [4] X.J. Liang, P.H. Yap, “Determining refractive index of single living cell using an integrated microchip, ” Sensors and Actuators A 133, 349–354 (2007).
    [5] 朱杰,王国栋,National Natural Science Foundation of China, 20572067.
    [6] F. A. Schabert and J. P. Rabe,“ Vertical Dimension of Hydrated Biological Samples in Tapping Mode Scanning Force Microscopy, ” Biophysical Journal 70, 1514-1520 (1996).
    [7] L. J. C. Jeuken,“ AFM Study on the Electric-Field Effects on Supported Bilayer Lipid Membranes, ” Biophysical Journal 94, 4711–4717 (2008).
    [8] V. L. Berre, E. T. visiol, and J. FrancËois,“ Dendrimeric coating of glass slides for sensitive DNA microarrays analysis, ”Nucleic Acids Research, 31, No. 16 e88 (2003).
    [9] S. J. OH, J. W. Park, “Surface Modification for DNA and Protein Microarrays,” OMICS A Journal of Integrative Biology 10, Number 3 (2006).
    [10] S. E.-Martı’n and J. Salgado,“ Self-Assembling of Peptide/Membrane Complexes by Atomistic Molecular Dynamics Simulations, ”Biophysical Journal 92, 903–912 (2007).
    [11] M. Samoc, A. Samoc and J. G. Grote, “Complex nonlinear refractive index of DNA, ” Chemical Physics Letters 431, 132–134 (2006).
    [12] S. Niu, R. F. Saraf, “Label-less fluorescence-based method to detect hybridization with applications to DNA micro-array, ”Biosensor and Bioelectronics 23, 714-720 (2007).
    [13] A. Nabok, S. P.J. Higson, “ The study of genomic DNA adsorption and subsequent interactions using total internal reflection ellipsometry, ” Biosensors and Bioelectronics 23 ,377–383 (2007).
    [14] G. Demirel, E. P. kin, “ A novel DNA biosensor based on ellipsometry, ”Surface Science 602, 952-959 (2008).
    [15] “ Imaging ellipsometry, ”Optrel GbR www.optrel.de.
    [16] A. Eing and M. Vaupel, “Imaging Ellipsometry in Biotechnology, ”ISBN 3-9807279-6-3, www.nanofilm.de.
    [17] J. Homola, and G. Gauglitz, “Surface plasmon resonance sensors: review, ”Sensors and Actuators B 54, 3–15 (1999).
    [18] C. T. Campbell, G. Kim, “ Review: SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics, ”Biomaterials 28, 2380–2392 (2007).
    [19] J. Mavri, M. Franko, “Application of chromogenic reagents in surface plasmon resonance (SPR), ”Biosensors and Bioelectronics 22, 1163–1167 (2007).
    [20] B.N. Feltis, T.J. Davis, “A hand-held surface plasmon resonance biosensor for the detection of ricin and other biological agents, ”Biosensors and Bioelectronics 23, 1131–1136 (2008).
    [21] Y. Lei, H. Chen, D. Pang, “ Electroless-plated gold films for sensitivity surface Plasmon resonance detection of white spot syndrome virus, ”Biosensor and Bioelectronics 23, 1200-1207 (2008).
    [22] A. Tsortos, E. Gizeli, “Quantitative Determination of Size and Shape of Surface-Bound DNA Using an Acoustic Wave Sensor, ”Biophysical Journal 94, 2706–2715 (2008).
    [23] R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum, ”Phil. Mag. 4, 396-408 (1902).
    [24] S. S. Wang and R. Magnusson, “New principle for optical filters, ” Appl. Phys. Lett. 61, 1022-1024 (1992).
    [25] S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters, ”Appl. Opt., 32 ,2606-2613 (1993).
    [26] J. N. Yih, Y. M. Chu, Y. C. Mao, W. H. Wang, F. C.Chien, C. Y. Lin, K. L. Lee, P. K. Wei ,and S. J. Chen, “ Optical waveguide biosensors constructed with subwavelength gratings, ”Appl. Opt. 45, 1938-1942 (2006).
    [27] B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper and B. Hugh, “A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions, ” Sensors and Actuators B 85, 219-226 (2002).
    [28] B. Cunningham, P. Li, “Colorimetric resonant reflection as a direct biochemical assay technique, ” Sensors and Actuators B 81, 316-328 (2002).
    [29] B. Lin, P. Li, B. Cunningham, “A label-free optical technique for detecting small molecule interactions, ”Biosensors and Bioelectronics 17, 827-834 (2002).
    [30] B. Cunningham, J. Qiu, P. Li, “Enhancing the surface sensitivity of colorimetric resonant optical biosensor, ”Sensors and Actuators B 87, 365-370 (2002).
    [31] B. Cunningham, J. Qiu, P. Li, “Self-referenced assay method for photonic crystal biosensors:Application to small molecule analytes, ” Appl. Phys. Lett. 89, 123113 (2006).
    [32] N. Ganesh, I. D. Block, and B. T. Cunningham, “Near ultraviolet-wavelength photonic-crystal biosensor with enhanced surface-to-bulk sensitivity ratio,” Appl. Phys. Lett. 89, 023901 (2006).
    [33] K. Cottier, M. Wiki, R. E. Kunz, “Label-free highly sensitive detection of (small) molecules by wavelength interrogation of integrated optical chips,” Sensors and Actuators B 91, 241-251 (2003).
    [34] I. D. Block, and B. T. Cunningham, “Photonic crystal optical biosensor in corporating structured low-index porous dielectric, ” Sensors and Actuators B 120, 187-193 (2006).
    [35] Nikhil Ganesh and Brian T. Cunningham, “Photonic-crystal near-ultraviolet reflectance filters fabricated by nanoreplica molding, ” Appl. Phys. Lett. 88 , 071110 (2006).
    [36] N. Ganesh, A. Xiang, and B. T. Cunningham, “Compact wavelength detection system incorporation a guided-mode resonance filter,” Appl. Phys. Lett. 90 , 081103 (2007).
    [37] Y. Feng, A. M. Ferrie, and J. Balkrishnan, “Resonant Waveguide Grating Biosensor for Living Cell Sensing, ” Biophysical Journal 91, 1925-1940 (2006).
    [38] L. L. Chan, B. Cunningham, P. Li, “Self-referenced assay method for photonic crystal biosensor: Application to small molecule analytes, ” Sensors and Actuators B 120, 392-398 (2007).
    [39] F. Wei, B. Sun, W. Liao and X. S. Zhao, “Achieving differentiation of single-base mutations through hairpin oligonucleotide and electric potential control, ” Biosensors and Bioelectronics 18, 1149-1155 (2003).
    [40] D. Rekesh, Y. Lyubchenko, and S. M. Lindsay, “Scanning Tunneling Microscopy of Mercapto-Hexyl-Oligonucleotides Attached to Gold, ” Biophysical Journal 71, 1079-1086 (1996).
    [41] A. Nabok, and S. P. J. Higson, “The study of genomic DNA adsorption and subsequent interactions using total internal refraction ellipsometer, ”Biosensor and Bioelectronics 23, 377-383 (2007).
    [42] A. Ulman, “Formation and Structure of Self-Assembled Monolayers, ” Chem. Rev. 96, 1533-1554 (1996).
    [43] G. Rong, A. Najmaie and S. M. Weiss, “ Nanoscale porous silicon waveguide for label-free DNA sensing,” Biosensors and Bioelectronics 23,1572–1576 (2008).
    [44] M. R. Vilar, A. M. Botelho do Rego, and R. Naaman, “Interaction of Self-Assembled Monolayers of DNA with Electrons: HREELS and XPS studies,” J. Phys. Chem. B, 112, 6957-6964 (2008).

    QR CODE
    :::