跳到主要內容

簡易檢索 / 詳目顯示

研究生: 彭唯敦
Wei-dun Peng
論文名稱: FPGA實現3780/2048/4096/8192快速傅立葉轉換處理器
FPGA Implementation of 3780/2048/4096/8192Fast Fourier Transform Processor
指導教授: 陳逸民
Yih-Min Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
畢業學年度: 97
語文別: 中文
論文頁數: 91
中文關鍵詞: 快速傅立葉轉換正交分頻多工系統Winograd傅立葉轉換演算法座標軸數位旋轉計算器
外文關鍵詞: Winograd, CORDIC, FFT, OFDM
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來正交分頻多工(OFDM)系統被廣泛的應用在各式無線通訊系統上,主要其優點為有效對抗符元間干擾(Inter-Symbol Interference)與頻率選擇性衰減的影響。其中快速傅立葉轉換(FFT)處理器為實現正交分頻多工系統的核心,因此在本論文中,將設計與實現一個低複雜度及高效率並可適用於多種OFDM標準系統之快速傅立葉轉換處理器,由於不同正交分頻多工的系統具有相似的硬體架構,藉由增加些許硬體以提高此FFT處理器之利用性。在演算法上,採用Radix-22與Winograd Fourier Transform Algorithm (WFTA) 演算法為基礎且使用單一路徑延遲回授(SDF)之管線架構實現。另外,旋轉因子(Twiddle Factor)的乘法以座標軸數位旋轉計算器(CORDIC)取代複數乘法器。架構中所需用到之記憶體以FPGA內部記憶體(Block Memory)來實現,達到節省硬體資源的目的。最後透過Xilinx Virtex-4 XC4VLX160來實現3780、8192、4096、2048點的快速傅立葉轉換處理器。


    In now days, Orthogonal Frequency Division Multiplexing, (OFDM) has been widely adapted in wireless communication to effectively overcome the Inter-Symbol Interference and Frequency Selective Fading Fast Fourier Transform (FFT) is the core technique in achieves Orthogonal Frequency Division Multiplexing, OFDM. In this thesis, we designed and created a low-complex and high performance FFT which can suitable in multiple OFDM standard systems.
    Due to different OFDM system has similar hardware framework, by raise up hardware to increase utilization of FFT. We adapt Radix-22 and Winograd Fourier Transform Algorithm as foundation and use Single-Path Delay Feedback (SDF) of pipeline-based architecture. Using CORDIC of Twiddle Factor to replace complex multiplexer. Hence, we try to attain decease hardware workload by introducing FPGA Block Memory. Finally, thru Xilinx Virtex-4 XCVLX160 to accomplish 3780、8192、4096、2048 Fast Fourier Transform.

    中文摘要 i 英文摘要 ii 致謝 iii 目錄 iv 圖目錄 vii 表目錄 x 第一章 緒論 1 1.1 研究動機與背景 1 1.2 章節提要 2 第二章 數位電視地面廣播系統規格簡介 4 2.1 OFDM簡介 4 2.1.1 OFDM調變原理 5 2.1.2 TDS-OFDM(Time Domain Synchronization OFDM)原理 9 2.2 DVB-T系統規格與參數 11 2.3 DMB-T系統規格與參數 14 第三章 快速傅立葉轉換演算法 18 3.1 簡介 18 3.2 庫利-圖基(Cooley-Tukey)演算法 19 3.3 古德-湯瑪士(Good-Thomas)演算法 20 3.4 2的冪次方快速傅立葉演算法 23 3.4.1 Radix-2 DIF演算法 23 3.4.2 Radix-4 DIF演算法 25 3.4.3 Rasix-22演算法 28 3.4.4 Radix-2/4演算法 31 3.4.5 Radix-2/8演算法 33 3.4.6 Radix-2/4/8演算法 34 3.5 Winograd快速傅立葉轉換演算法(WFTA) 36 3.5.1 WFTA 3 36 3.5.2 WFTA 5 38 3.5.3 WFTA 7 40 3.6 3780點快速傅立葉演算法 44 3.6.1 綜合分解演算法實現3780點FFT 44 3.6.2 混合基演算法實現3780點FFT 47 3.7 旋轉因子(Twiddle Factor) 49 第四章 FFT硬體架構 51 4.1 Pipeline-Based快速傅立葉轉換之架構 51 4.2 單一路徑延遲回授(SDF)架構 52 4.2.1 單一路徑延遲回授(SDF)架構簡介 52 4.2.2 Radix-2 SDF架構 53 4.2.3 Radix-4 SDF架構 53 4.2.4 Radix-22 SDF架構 53 4.2.5 WFTA SDF架構 54 4.3 3780/2048/4096/8192快速傅立葉轉換之架構 56 4.3.1 座標軸數位旋轉計算器(Coordinate Rotation Digital Computer, CORDIC) 59 4.3.2 旋轉因子產生單元 (Twiddle Factor Generator,TWG) 63 4.3.3 處理元件 (Processing element,PE) 67 4.3.4 處理元件控制邏輯單元 (PE Control Logic Unit,PE CLU) 70 4.3.5 區塊記憶體 (Block memory) 與位址產生器 (Address Generator,AG) 74 第五章 電腦模擬結果與硬體實現 76 5.1 設計流程 76 5.2 定點數模擬(Fixed-point simulation) 77 5.3 核心元件與埠腳定義 84 第六章 結論與未來發展 88 參考文獻 89

    [1] ETSI, “Digital Video Broadcasting (DVB);Framing structure, Channel coding and Modulation for Digital Terrestrial Television,” ETSI EN 300 744 v1.5.1,2004
    [2] GB 20600-2006, Framing Structure, Channel Coding and Modulation for Digital Television Terrestrial Broadcasting System, Chinese National Standard, 2006.
    [3] Yang Xu-xia, GUI Lin, YU Song-yu, “Study of 3780-point FFT processor” Inst. Of Image Communicational&Information Processing, Shanghai Jiaotong Univ., Shanghai 200030, China.
    [4] Dean P. Kolba, and Thomas W. Parks, “A Prime Factor FFT Algorithm Using High-Speed Convolution,” IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. ASSP-25, No. 4, August 1977.
    [5] S. He and M. Torkelson, “Designing Pipeline FFT Processor for OFDM (de)Modulation,” in Proc. URSI Int. Symp. Signals, Systems, and Electronics, vol.29, Oct.1998,pp.257-262.
    [6] Y.-T. Lin, P.-Y. Tsai and T.-D. Chiyeh, “Low-power variable-length fast Fourier transform processor,” IEEE Proc.-Computer. Digit. Tech., Vol. 152, No. 4, pp 499-506, July 2005.
    [7] Sang Yoon Park, Nam Ik Cho, Sang Uk Lee, Kichul Kim, Jisung Oh, “Design of 2K/4K/8K-point FFT processor based on CORDIC algorithm in OFDM receiver” in IEEE Communications, Computers and signal Processing, Vol.2, pp. 457-460, Aug. 2001.
    [8] Jen-Chih Kuo, Ching-Hua Wen, Chih-Hsiu Lin, An-Yeu(Andy) Wu, “VLSI Design of a Variable-Length FFT/IFFT Processor for OFDM-Based Communication Systems,” in EURASIP Journal on Applied Signal Processing 2003:13, 1306-1316.
    [9] Hu, Y.H.: “The Quantization effects of CORDIC algorithm,” IEEE Trans. Signal Process., 1992, Vol.40, No. 4, pp. 834-844.
    [10] Stefan Johansson, S. He and Peter Nilsson, “Wordlength optimization of a Pipeline FFT Processor,” In Proc. Symp. Circuits and Systems, Vol.1, pp.501-503, Aug. 1999.
    [11] Heiko Schmidt and Karl-Dirk Kammeyer, “Quantization and its effects on OFDM concepts for Wireless Indoor applications,”
    [12] Bass, B.M.: “A low-power, high-performance, 1024-point FFT processor,” IEEE J. Solid-State Circuits, 1999, Vol. 34, (3), pp. 380-387
    [13] Chung-Ping Hung, Sau-Gee Chen and Kun-Lung Chen, “Design of an efficient
    variable-length FFT processor,” IEEE ISCAS, Vol. 2, pp. 833-836, May 2004.
    [14] Yu-Wei Lin, Hsung-Yu Liu, and Chen-Yi Lee, “A Dynamic Scaling FFT Processor for DVB-T Applications.” IEEE Journal of solid-state circuits. Vol. 39, No. 11, November 2004.
    [15] Wei-Hsin Chang, Truong Nguyen, “An OFDM-specified lossless FFT architecture,” IEEE Transactions on circuits and systems -I: Regular papers, Vol. 53, No. 6, JUNE 2006
    [16] Chua-Chin Wang, Jian-Ming Huang, and Hsian-Chang Cheng, “A 2K/8K Mode
    Small-Area FFT Processor for OFDM Demodulation of DVB-T Receivers, ”IEEE
    Transactions on Consumer Electronics, Vol. 51, No. 1, pp. 28-32, February 2005.
    [17] Sang Yoon Park and Nam Ik Cho, “Fixed-point error analysis of CORDIC processor base on the variance propagation formula,” IEEE Trans. on Circuits and System, Vol. 51, No. 3, March 2004.
    [18] Robert Michael Owens and Joseph JA’JA’, “A VLSI Chip for the Winograd / Prime Factor Algorithm to Compute the Discrete Fourier Transform,”IEEE Trans. On Acoustics, Speech, and Signal Processing, VOL. ASSP-34, NO. 4, AUGUST 1986.
    [19] Harvey F. Silverman, “An Introduction to Programming the Winograd Fourier Transform Algorithm,” IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. ASSP-25, No. 2, April 1977.
    [20] Zhi-Xing Tang, Yu-Peng Hu, Chang-Yong Pan, and Lin Yang, “Design of a 3780-Point IFFT Processor for TDS-OFDM, ” IEEE Transactions on Broadcasting, Vol. 48, No. 1, March 2002.

    QR CODE
    :::