跳到主要內容

簡易檢索 / 詳目顯示

研究生: 賴威任
Wei-Jen Lai
論文名稱: 具自行對準凹陷電極1x4矽質金屬-半導體-金屬光偵測器陣列的特性
Characteristics of 1x4 Si MSM-PD Array With Self-Aligned Trench Electrodes
指導教授: 洪志旺
Jyh-Wong Hong
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 89
語文別: 中文
論文頁數: 49
中文關鍵詞: 光偵測器陣列矽質非晶矽自行對準凹陷電極
外文關鍵詞: MSM, photodetector, array, self-aligned, trench electrodes, amorphous Si
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 本論文的主題是利用自動對準製程製作具凹陷電極及非晶矽氫薄膜的一列四行金屬-半導體-金屬光偵測器陣列,並且探討其交、直流特性及各頻道間的交越失真,以利光偵測器的實際運用。



    The obtained device had the higher responsivity and faster response speed than those of conventional planar Si MSM-PDs with non-self-aligned trench-electrodes. The responsivity of the device with self-aligned trench-electrodes was 0.30 A/W, which was higher than that (0.15 A/W) of the conventional planar one having no trench. The device knee voltage was decreased from 5 V to less than 1 V by using self-aligned trench-electrodes, and the FWHM (full width at half maximum) of temporal response was reduced from 66.6 ps to 56.0 ps. This would be due to the self-aligned trench-electrodes resulting in a more uniform lateral electric field in the light absorption region of device.
    Cross-talks among channels were not obvious because of the employed properly recessed isolation lanes. Different finger spacings and widths of interdigitated electrodes resulted in different responsivities of the MSM-PDs. The narrower the finger spacings and widths, the higher the device responsivity due to the larger device effective active area.
    The obtained 1x4 Si MSM-PD array with self-aligned trench-electrodes had good characteristics and could easily be integrated with Si OEIC (Opto-Electronic IC). It was expected that the MSM-PD array would be used in optical fiber communication system.

    Abstract……………………………………………………….…….…(Ⅲ) Table Caption……..………………………………………………….(V) Figure Captions………………………………………………………..(VI) Chapter 1 INTRODUCTION………………..…………….…………1 Chapter 2 DEVICE OPERATION PRINCIPLES AND FABRICATION PROCESSES……………………………7 2-1Operation Principles of MSM-PD…………………..7 2-2Array Fabrication Processes……………………….12 Chapter 3 MEASUREMENT TECHNIQUES……………....……..21 3-1Responsivity……………..……………..………...21 3-2 Response Speed…….……….………………..……21 Chapter 4 EXPERIMENTAL RESULTS AND DISCUSSIONS….25 4-1Design and Process Considerations…………….….25 4-2DC Response of 1x4 MSM-PD Array……………..26 4-3AC Response of 1x4 MSM-PD Array……………..31 4-4Cross-Talks Among Channels……………..………36 4-5Dark-Current Comparison Between Devices with Self-Aligned and Non-Self-Aligned Trench-electrodes…………………………………………...37 4-6DC Response of Devices with Different Finger Spacings and Widths…………………………..…...37 Chapter 5 CONCLUSIONS…………………………………………..45 REFERENCES……………………………………………………….….47

    [1]P. D. Hodson, R. H. Wallis, J. I. Davies, and H. E. Shephard, "InGaAs PIN Photodiodes on Recessed Semi-Insulating GaAs Substrates," IEE Proceeding- J, vol. 135, no. 1, pp. 2-4, 1988.
    [2]K. Wakita, I. Iotaka, K. Mogi, and Y. Kawamura, "High-Speed AlGaAs Multiple Quantum Well PIN Photodiodes," Electronics Letters, vol. 25, no. 22, pp. 1533-1534, 1989.
    [3]Q. Wada, S. Miura, T. Mikawa, O. Aoki, and T. Kiyomga, "Fabrication of Monolithic Twin-GaInAs PIN Photodiode for Balanced Dual-Detector Optical Coherent Receivers," Electronics Letters, vol. 24, no. 9, pp. 514-516, 1988.
    [4]T. Kakawa, N. Matsumoto, and K. Kumabe, "Amorphous Silicon Photoconductive Sensor," Jpn. J. Appl. Phys., vol. 21, Suppl. 12-1, pp. 251-256, 1981.
    [5]Y. K. Fang, S. B. Hwang, K. H.Chen, C. R. Liu, and L. C. Kuo, "A Metal-Amorphous-Silicon-Germanium Alloy Schottky Barrier for Infrared Optoelectronic IC on Glass Substrate Application," IEEE Trans. Electron Devices, vol. 39, pp. 49-51, 1992.
    [6]C. Y. Chang, B. S. Wu, Y. K. Fang, and R. H. Lee, " Amorphous Silicon Bulk Barrier Phototransistor with Schottky Barrier Emitter." Appl. Phys. Lett., vol. 47, pp. 49-51, 1985.
    [7]S. B. Hwang, Y. K. Fang, K. H. Chen, C. R. Liu, J. D. Hwang, and M. H. Chou, "An a-Si:H/a-SiGe:H Bulk Barrier Phototransistor with an a-SiC:H Barrier Enhancement Layer for High-gain IR Optical Detector," IEEE Trans. Electron Devices, vol. 40, no. 2, pp. 342-347, 1993.
    [8]S. Takayama, K. Mori, K.Suzuki, and C. Tanuma, "An a-Si:H Photoconductive Sensor with Al Gate Electrode," IEEE Trans. Electron Devices, vol. 40, no. 2, pp. 342-347, 1993.
    [9]J. W. Hong, W. L. Laih, Y. W. Chen, Y. K. Fang, C. Y. Chang, and J. Gong, "Optical and Noise Characteristics of Amorphous Si/SiC Superlattice Reach-Through Avalanche Photodidoes," IEEE Trans. Electron Devices, vol. 37, no. 8, pp. 1804-1808, 1990.
    [10]Y. K. Fang, S. B. Hwang, K. H. Chen, C. R. Liu, M. J. Tsai, and L. C. Kuo, "An Amorphous SiC/Si Heterojunction p-i-n Diode for Low-Noise and High-Sensitivity UV Detector," IEEE Trans. Electron Devices, vol. 39, no. 2, pp. 292-296, 1992.
    [11]Dennis L. Rogers, Lightwave Technol., vol. 12, p. 625, 1991.
    [12]Dennis L. Rogers, "Integrated Optical Receviers Using MSM Detectors," Journal of Lightwave Technology, vol.9, no.12, pp. 1635-1638, December 1991.
    [13]Wen-Jeng Ho, Meng-Chyi Wu, and Yuan-Kuang Tu, “Uniform and High Performance of Monolithically Integrated 1x12 Array of Planar GaInAs Photodiodes,” IEEE Trans. Electron Devices, vol. 44, no. 4, pp.559-564, 1997.
    [14]Y. Liu, S. R. Forrest, G. L. Tangonan, R. A. Jullens, R. Y. Loo, V. L. Jones, D. Persechini, J. L. Pikulski, and M. M. Johnson, “Very-high-bandwidth In0.53Ga0.47As p-i-n detector arrays,” IEEE Photon. Technol. Lett., vol. 3, pp. 931-933, 1991.
    [15]M. Makiuchi, M. Norimatsu, T. Sakurai, K. Kondo, and M. Yano,” Flip-chip Planar GaInAs/InP p-i-n Photodiode array for Parallel Optical Transmission,” IEEE Photon. Technol. Lett., vol. 5, pp. 518-520, 1993
    [16]S. M. Sze, Physics of Semiconductor Devices, John Wiley & Sons, Inc., 2nd ed, Chap.10, p. 613, 1985.
    [17]A. Selvarajan, K. Shenai, Vijai K. Traipathi, Optoelectronics: Technologies and Applications, Chap. 10, pp. 211-218.
    [18]S. Y. Wang, D. M. Bloom, and D. M. Collins, ”Ultrahigh Speed Photodetectors,” SPIE, vol. 439, pp. 178, 1993.
    [19]H. Matsuura and H. Okushi, “Schottky Barrier Junction of Hydrogenated Amouphous Silicon-Germanium Alloys,” J. Appl. Phys. No. 62, pp. 2871-2875, 1987.
    [20]M. Y. Liu, S. Y. Chou, S. Alexandrou, C. C. Wang and T. Y. Hsiang, ”110 GHz Si MSM Photodetectors,” IEEE Trans. Electron Devices, vol. 40, no. 11, pp. 2145-2146, 1995.
    [21]L. H. Laih, “Fabrication and Characteristics of Si-Based Metal-Semiconductor-Metal Photodetectors,” Ph.D. Thesis, Institute of Electrical Engineering, National Central University, Chungli, Taiwan, Republic of China, 1999.
    [22]T. C. Chang, "Characteristics of Metal-Semiconductor-Metal Photodetector (MSM-PDs) with Amorphous Heterojunction and Recessed or Ridged Cr Electrodes," Master Thesis, Institute of Electrical Engineering, National Central University, Chungli, Taiwan, Republic of China, 1997.
    [23]C. H. Liao, “Characteristics of MSM Photodetectors,” Master Thesis, Institute of Electrical Engineering, National Central University, Chungli, Taiwan, Republic of China, 2000.
    [24]K. E. Bean, “Anisotropic Etching of Silicon,” IEEE Trans. Electron Devices, vol. ED-25, no. 10, pp. 1185-1193, 1978.

    QR CODE
    :::