| 研究生: |
波卓洛 Pocholo Luis Pasol Mendiola |
|---|---|
| 論文名稱: | Search for H→Zγ→bbγ produced in association with a Z boson in proton-proton collisions at √s = 13 TeV with the CMS detector at the LHC |
| 指導教授: |
郭家銘
Chia-Ming, Kuo |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 物理 、高能物理 、原子 、希格斯玻色子 、Z玻色子 、光子 |
| 外文關鍵詞: | high-energy physics, quantum field theory, cern, european organization for nuclear research, elementary particles, particle detection, experimental particle physics, experimental high-energy physics |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
對 H → Zγ → bbγ 與 Z 玻色子初步調查而以得呈現出有所相
關性。這項分析是以 CMS detector 在√s = 13 TeV 所蒐集的
資料作為基準,並符合 35.9 fb^{−1} 的積分亮度。H 玻色子與 Z
玻色子相關性是由電子與緲子其一的電荷相反輕子重新被組
成。另一方面來說,希格斯玻色子是從Zγ最終產出的bbγ所
重組而成。此分析以兩個 b-tagged 噴流被分成電子與緲子通
道。在信賴水準95%,一個預期排除極限9.681 × 10^4到 4.138
× 10^4乘以電子通道中的標準模型值,而 4.081 × 10^4到 1.836
× 10^4 乘以在緲子通道中的標準模型值,而 3.863 × 10^4 到
1.669 × 10^4在兩者通道組合中。全部介於 120 GeV 到 130 GeV
的質量範圍就可獲得。
A preliminary search for H→Zγ→bbγ produced in association with a Z boson is presented. The analysis is based on the data collected in 2016 with the CMS detector at a center-of-mass energy √s = 13 TeV, corresponding to an integrated luminosity of 35.9 fb^{-1}. The Z boson produced in association with the Higgs boson is reconstructed from a pair of oppositely-charged leptons, either from electrons or muons. On the other hand, the Higgs boson is reconstructed from the Zγ in final states of b¯bγ. The analysis is separated into electron and muon channels with two b-tagged jets. An expected exclusion limit at 95% confidence level of 9.681x10^4 to 4.138x10^4 times the Standard Model value in the electron channel, 4.081x10^4 to 1.836x10^4 times the Standard Model value in the muon channel, and 3.863x10^4 to 1.669x10^4 in the combination of both channels have been obtained in the 120 GeV to 130 GeV mass range.
[1] Willis E. Lamb and Robert C. Retherford. “Fine Structure of the Hydrogen Atom by a Microwave Method”. In: Phys. Rev. 72 (3 1947), pp. 241–243. DOI: 10.1103/PhysRev.72.241. URL: https://link.aps.org/doi/10.1103/PhysRev.72.241.
[2] Marcela Carena, Ian Low, and Carlos E. M. Wagner. “Implications of a modified Higgs to diphoton decay width”. In: Journal of High Energy Physics 2012.8 (2012). ISSN: 1029-8479.DOI: 10.1007/jhep08(2012 ) 060. URL: http://dx.doi.org/10.1007/JHEP08(2012)060.
[3] Albert M Sirunyan et al. “Search for high-mass Z resonances in protonproton collisions at ps = 8 and 13 TeV using jet substructure techniques”. In: Phys. Lett. B 772 (2017), pp. 363–387. DOI: 10.1016/j.physletb.2017.06.062. arXiv: 1612.09516 [hep-ex].
[4] L. Bergstrom and G. Hulth. “Induced Higgs Couplings to Neutral Bosons in e+e Collisions”. In: Nucl. Phys. B259 (1985). [Erratum: Nucl. Phys.B276,744(1986)], pp. 137–155. DOI: 10 . 1016 / 0550 - 3213(86 ) 90074-X,10.1016/0550-3213(85)90302-5.
[5] Abdelhak Djouadi. Decays of the Higgs bosons. Tech. rep.
[6] Esma Mobs. “The CERN accelerator complex. Complexe des accélérateurs du CERN”. In: (2016). General Photo. URL: http://cds.cern.ch/record/2197559.
[7] G. Acquistapace et al. “CMS, the magnet project: Technical design report”. In: (1997).
[8] CMS collaboration et al. “Performance of photon reconstruction and identification with the CMS detector in proton-proton collisions at sqrt (s)= 8 TeV”. In: arXiv preprint arXiv:1502.02702 (2015).
[9] CMS collaboration et al. “Description and performance of track and primary-vertex reconstruction with the CMS tracker”. In: Journal of Instrumentation 9.10 (2014), P10009.
[10] CMS Collaboration. “Performance and operation of the CMS electromagnetic calorimeter”. In: Journal of Instrumentation 5.03 (2010),T03010–T03010. ISSN: 1748-0221. DOI: 10 . 1088 / 1748-0221/5/03/t03010. URL: http://dx.doi.org/10.1088/1748-0221/5/03/T03010.
[11] J Freeman. “Innovations for the CMS HCAL”. In: At the Leading Edge: The ATLAS and CMS LHC Experiments (2010), p. 259.
[12] S. Chatrchyan et al. “The CMS experiment at the CERN LHC”. In: JINST 3(2008), S08004. DOI: 10.1088/1748-0221/3/08/S08004.
[13] Florian Beaudette. “The CMS Particle Flow Algorithm”. In: Proceedings, International Conference on Calorimetry for the High Energy Frontier (CHEF 2013): Paris, France, April 22-25, 2013. 2013, pp. 295–304. arXiv: 1401.8155
[hep-ex].
[14] et. al. Chatrchyan S. “Search for the Standard Model Higgs Boson in the Decay Channel H\toZZ\to4l in pp collisions at ps = 7 TeV”. In: Phys. Rev. Lett. 108 (11 2012), p. 111804. DOI: 10.1103/PhysRevLett.108.111804. URL: https://link.aps.org/doi/10.1103/PhysRevLett.108.111804.
[15] A. M. Sirunyan et al. “Measurements of properties of the Higgs boson decaying into the four-lepton final state in pp collisions at ps = 13 TeV”. In: Journal of High Energy Physics 2017.11 (2017). ISSN: 1029-8479. DOI: 10.1007/jhep11(2017)047. URL: http://dx.doi.org/10.1007/JHEP11(2017)047.
[16] A. Bodek et al. “Extracting muon momentum scale corrections for hadron collider experiments”. In: The European Physical Journal C 72.10 (2012).ISSN: 1434-6052. DOI: 10 . 1140 / epjc / s10052 - 012 - 2194 - 8. URL: http://dx.doi.org/10.1140/epjc/s10052-012-2194-8.
[17] Serguei Chatrchyan et al. “Measurement of the inclusive W and Z production cross sections in pp collisions at ps = 7 TeV with the CMS experiment”. In: Journal of High Energy Physics 2011.10 (2011), p. 132.
[18] Matteo Cacciari, Gavin P Salam, and Gregory Soyez. “The anti-kt jet clustering algorithm”. In: Journal of High Energy Physics 2008.04 (2008), 063–063. ISSN: 1029-8479. DOI: 10.1088/1126- 6708/2008/04/063. URL: http://dx.doi.org/10.1088/1126-6708/2008/04/063.
[19] Camille Beluffi. “b jet Identification in CMS”. In: Nucl. Part. Phys. Proc. 273-275 (2016), pp. 2491–2493. DOI: 10.1016/j.nuclphysbps.2015.09.435.
[20] A.M. Sirunyan et al. “Search for Higgs boson pair production in the b¯b final state in pp collisions at s=13TeV”. In: Physics Letters B 788 (2019), 7–36. ISSN: 0370-2693. DOI: 10.1016/j.physletb.2018.10 .056.URL: http://dx.doi.org/10.1016/j.physletb.2018.10.056.
[21] Nazar Bartosik. B-Tagging.2016. URL: http://bartosik.pp.ua/hep_sketches/btagging.
[22] A.M. Sirunyan et al. “Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV”. In: Journal of Instrumentation 13.05 (2018), P05011–P05011. ISSN: 1748-0221. DOI: 10.1088/1748- 0221/13/05/p05011. URL: http://dx.doi.org/10.1088/1748-0221/13/05/P05011.
[23] A. M. Sirunyan et al. “Search for the decay of a Higgs boson in the \ell \ell channel in proton-proton collisions at \sqrt(s) = 13 TeV”. In: Journal of High Energy Physics 2018.11 (2018). ISSN: 1029-8479. DOI: 10.1007/jhep11(2018)152. URL: http://dx.doi.org/10.1007/JHEP11(2018)152.
[24] S. Chatrchyan et al. “Observation of a new boson with mass near 125 GeV in pp collisions at sqrt(s) = 7 and 8 TeV”. In: Journal of High Energy Physics 2013.6 (2013). ISSN: 1029-8479. DOI: 10.1007/jhep06(2013)081. URL: http://dx.doi.org/10.1007/JHEP06(2013)081.
[25] MJ Oreglia. A study of the reactions , see appendix D. Tech. rep. SLAC report SLAC.
[26] Serguei Chatrchyan et al. “Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC”. In: Phys. Lett. B716 (2012), pp. 30–61. DOI: 10.1016/j.physletb.2012.08.021. arXiv: 1207.7235 [hep-ex].
[27] Josh Bendavid. Implications of Bias Threshold in Pull Definition. 2013. URL: https://indico.cern.ch/event/255493/ contributions/1584346/attachments/447909/621085/biasJun26.pdf.
[28] CMS Luminosity Measurements for the 2016 Data Taking Period. Tech. rep. CMS-PAS-LUM-17-001. Geneva: CERN, 2017. URL: https://cds.cern.ch/record/2257069.
[29] Alexander L. Read. “Presentation of search results: The CL(s) technique”. In: J. Phys. G28 (2002). [,11(2002)], pp. 2693–2704. DOI: 10.1088/0954-3899/28/10/313.
[30] Glen Cowan et al. “Asymptotic formulae for likelihood-based tests of new physics”. In: The European Physical Journal C 71.2 (2011). ISSN: 1434-6052. DOI: 10.1140/epjc/s10052-011-1554-0. URL: http://dx.doi.org/10.1140/epjc/s10052-011-1554-0.