| 研究生: |
黎晨晧 Chen-Hao LEE |
|---|---|
| 論文名稱: |
適應性路燈之光學設計 The Optical Design of Adaptive Street Lighting |
| 指導教授: |
孫慶成
Ching-Cherng Sun 楊宗勳 Tsung-Hsun Yang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2015 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 表面結構擴散片 、路燈 、照明 、光塑形 |
| 外文關鍵詞: | Surface-structured diffuser, Street light, Lighting, Beam shaping |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文以表面結構擴散片為主要元件,設計出一款能適應在曲線道路照明並減少光害及能量損失的路燈照明模組為目標,並探討如何將光能有效地控制並集中照射在曲線道路之目標區域內,而在實際應用上,該LED路燈照明模組只需藉由更換不同擴散片的方式來適應用於不同的曲線道路上,即能達到道路照明之效果,在模擬設計方面,根據國際照明委員會 CIE 與 IESNA 擬定之法規標準,我們以一實際的曲線道路做為照射目標區域,並以燈桿高度為12 m 的情形下,獲得中心照度為 17 lx且光學利用率為 53.79 % 之光學特性,最後製作出實際表面微結構擴散片進行分析與模擬做一驗證。
In this thesis, we proposed a lighting module of the adaptive streetlight with surface-structured diffuser. By using the proposed lighting module, the light can be effectively focused on the target region of curved roadway to reduce the light pollution and energy loss. Besides, in the practical application of the proposed lighting module, different adaptive light patterns on the different curved roadways can be easily obtained by replacing the corresponding surface-structured diffuser. Based on CIE and IESNA regulations, we adopted simulation analyses. Under a mounting height of 12 m, the lighting module can perform the excellent effects that the central illuminance is 17 lx and the optical utilization factor is 53.79% on the target region. Finally, we manufactured an real prototype of surface-structured diffuser to perform the related measurement analyses and compare with the simulation results as a demonstration.
[1] J. Kaufman, IES Lighting Handbook (Illuminating Engineering Society of North America, New York, 1981).
[2] R. Kane and H. Sell, Revolution in Lamps: A Chronicle of 50 Years of Progress (The Fairmont Press, 2001).
[3] 林憲德、趙又嬋,都是愛迪生惹的禍:光害,新自然主義出版社,中華民國九十八年。
[4] S. M. Sze, Semiconductor Devices : Physics and Technology, (John Wiley & Sons, Inc., New York, 1985).
[5] B. E. A. Saleh and N. C. Teich, Fundamentals of Photonics, 1st ed., (John Wiley & Sons, Inc., New York, 1991).
[6] E. F. Schubert, Light-emitting Diodes, 2nd ed. (Cambridge University Press, New York, 2006).
[7] H. J. Round, “A note on carborundum,” Electrical world 49, 309 (1907).
[8] N. Holonyak and S. F. Bevaqua, “Coherent (visible) light emission from Ga(As1–xPx) junctions,” Appl. Phys. Lett. 1, 82 (1962).
[9] C. P. Kuo, R. M. Fletcher, T. D. Ostenkowski, M. C. Lardizabal, M. G. Craford, and V. M. Robbins, “High performance AlGaInP visible light-emitting diodes,” Appl. Phys. Lett. 57, 2937-2939 (1990).
[10] H. Sugawara, M. Ishikawa, and G. Hatakoshi, “High-efficiency InGaAlp/ GaAs visible light-emitting diodes,” Appl. Phys. Lett. 58, 1010-1012 (1991).
[11] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,” Appl. Phys. Lett. 48, 353 (1986).
[12] Y. Koide, N. Itoh, K. Itoh, N.Sawaki, and I. Akasaki, “Effect of AlN buffer layer on AlGaN/ α-Al2O3 heteroepitaxial growth by metalorganic vapor phase epitaxy, ” Jpn. J. Appl. Phys. 27, 11561161 (1988).
[13] I. Akasaki, H. Amano, K. Hiramatsu, and N. Sawaki, “High efficiency blue LED utilizing GaN film with AlN buffer layer grown by MOVPE,” Inst. Phys. Conf. Der. 91, 633-636 (1988).
[14] I. Akasaki, H. Amano, Y. Koide, K. Hiramatsu, and N. Sawaki, “Effects of AlN buffer layer on crystallographic structure and on electrical and optical properties of GaN and Ga1-xAlxN (0< x ≤0.4) films grown on sapphire substrate by MOVPE,” J. Cryst. Growth 98, 209-219 (1989).
[15] H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, “P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI),” Jpn. J. Appl. Phys. 28, L2112-L2114 (1989).
[16] S. Nakamura, T.Mukai, M.Senoh, and N. Iwas, “Thermal annealing effets on p-type Mg-doped GaN films,” Jpn. J. Appl. Phys. 31, L139-L142 (1992).
[17] S. Nakamura, M. Senoh, and T.Mukai, “P-GaN/n-InGaN/n-GaN double-hetero structure blue- light-emitting diodes,” Jpn. J. Appl. Phys. 32, L8-L11 (1993).
[18] S. Nakamura, M. Senoh, and T. Mukai, “High-power InGaN/GaN double-hetero structure violet light-emitting diodes,” Appl. Phys. 62, 2390-2392 (1993).
[19] S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-hetero structure blue-light-emitting diodes,” Appl. Phys. Lett. 64, 1687-1689 (1994).
[20] S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, “High-brightness InGaN blue, green, and yellow light-emitting diodes with quantum well structures,” Jpn. J. Appl. Phys. 34, L797-L799 (1995).
[21] S. Nakamura, T. Mukai, and N. Iwasa, “Light-emitting gallium nitride-based compound semiconductor device,” U. S. Patent, US 5578839 (1996).
[22] 2014 諾貝爾物理學獎,Background Story of the Invention of Efficient Blue InGaN Light Emitting Diodes, http://www.nobelprize.org
/nobel_prizes/physics/laureates/2014/nakamura-lecture.html.
[23] Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi, “Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material,” U. S. Patent, US 5998925 (1999).
[24] S. Nakamura and G. Fasol, The Blue Laser Diode (Springer, Berlin, 1997).
[25] M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol 3, 160-175 (2007).
[26] A. Zukauskas, M. S. Shur, and R. Caska, Introduction to Solid-state Lighting ( John Wiley & Sons, New York, 2002 ).
[27] D. A. Steigerwald, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8, 310-312 (2002).
[28] E. F. Schubert and J. K. Kim, “Solid-state light sources becoming smart,” Science 308, 1274-1278 (2005).
[29] N. Narendran, N. Maliyagoda, A. Bierman, R. Pysar, and M. Overington, “Characterizing white LEDs for general illumination applications,” Proc. SPIE 3938, 240-248 (2000).
[30] F. Nguyen. B. Terao, and J. Laski, “Realizing LED illumination lighting applications,” Proc. SPIE 5941, 594105 (2005).
[31] Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products, by US Departmaent of energy.
[32] D. Sun “Challenges and opportunities for high power white LED development, ” DOE SSL R&D Workshop (2012).
[33] Cree, Inc., Cree 231 Lumen Per Watt LED Shatters LED Efficacy
Records, http://www.cree.com/news-and-events/cree-news/press-releas
es/2011/may/110509-231-lumen-per-watt.
[34] Cree, Inc., Cree First to Break 300 Lumens-Per-Watt Barrier, http://www.cree.com/News-and-Events/Cree-News/Press-Releases/2014/March/300LPW-LED-barrier.
[35] J. Y. Tsao, Light Emitting Diodes (LEDs) for General Illumination : An OIDA Technology Roadmap Update 2002 (OIDA, Washington, D. C., 2002).
[36] W. T. Chien, C. C. Sun, and I. Moreno, “Precise optical model of multi-chip white LEDs,” Opt. Express 15, 7572-7577 (2007).
[37] E. Hecht, Optics (Addison Wesley, San Francisco, 2002).
[38] V. N. Mahajan, Optical Imaging and Aberrations: Part I Ray Geometrical Optics (SPIE Press, Washington, 1998).
[39] 孫慶成,光電工程概論,初版,全華圖書股份有限公司,新北市,中華民國一百零一年。
[40] CIE 1988 2° spectral luminous efficiency function for photopic vision, CIE Publication NO. 86 (1998).
[41] C. C. Sun, T. X. Lee, S. H. Ma, Y. L. Lee, and S. M. Huang, “Precise optical modeling for LED lighting verified by cross correlation in the midfield region,” Opt. Lett. 31, 2193-2195 (2006).
[42] G. B. Arfken and H. J. Weber, Mathematical Methods for Physicists (Academic Press, San Diego, 2001).
[43] D. K. Cheng, Field and Wave Electromagnetics (Addison Wesley, San Francisco, 1989).
[44] J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996).
[45] Illuminating Engineering Society of North America, The IESNA Lighting Handbook:Reference and Application, 9th ed. (IESNA, New York, 2000).
[46] Z. Feng, Y. Luo, and Y. Han, “Design of LED freeform optical system for road lighting with high luminance/illuminance ratio,” Opt. Express 18, 22020-22031 (2010).
[47] J. W. Pan, S. H. Tu, W. S. Sun, C. M. Wang, and J. Y. Chang, “ Integration of non-Lambertain LED and reflective optical element as efficient street lamp,” Opt. Express 18, A221-A230 (2010).
[48] J. Jiang, S. To, W. B. Lee, and B. Cheung, “Optical design of a freeform TIR lens for LED streetlight,” Optik 121, 1761-1765 (2010).
[49] S. Magarill, “Skew-faced elliptical reflector,” Opt. Lett. 36, 532-533 (2011).
[50] R. Mullner and A. Riner, “An energy efficient pedestrian aware smart street lighting system,” International Journal of Pervasive Computing and Communications 7, 147-161 (2011).
[51] S. Wang, K. Wang, F. Chen, and S. Liu, “Design of primary optics for LED chip array in road lighting application,” Opt. Express 19, A716-A724 (2011).
[52] C. H. Jen, Y. Y. Chen, A. J. W. Whang, and M. J. Lu, “Non-axisymmetrical freeform design for short LED street lamp,” Proc. SPIE 8123, 812307 (2011).
[53] A. Haans and Y. A. W. de Kort, “Light distribution in dynamic street lighting: two experimental studies on its effects on perceived safety, prospect, concealment, and escape,” J. Environ. Psychol. 32, 342-352 (2012).
[54] Y. C. Lo, K. T. Huang, X. H. Lee, and C. C. Sun, “Optical design of a butterfly lens for a street light based on a double-cluster LED,” Microelectron. Reliab. 52, 889-893 (2012).
[55] 郭明旭,以HID氙氣燈為光源之路燈光學設計,元智大學光電工程學系碩士 論文,中華民國九十七年。
[56] 黃冠騰,以 LED 發光二極體為光源之路燈光學設計,元智大學光電工程學系碩士 論文,中華民國九十九年。
[57] 林士凱,集成式發光二極體路燈之光學設計與驗證,國立中央大學光電科學與工程碩士論文,中華民國一百年。
[58] 金瓜石金水公路S彎道,http://album.blog.yam.com/show.php?
a=box1817&f=10642397&i=27211286.
[59] Breault Research Organization, Inc., http://www.breault.com/index.php.
[60] N. Metropolis and S. Ulam, “The Monte Carlo method,” J. Am. Stat. Assoc. 44, 335-341 (1949).
[61] W. B. Joyce, R. Z. Bachrach, R. W. Dixon, and D. A. Sealer, “ Geometrical properties of random particles and the extraction of photons from electroluminescent diodes,” J. Appl. Phys. 45, 2229-2253 (1974).
[62] D. Z. Y. Ting and T. C. McGill, “Monte carlosimulation of light-emitting diode light-extraction characteristics,” Opt. Eng. 34, 3545-3553 (1995).
[63] S. Ulam, R. D. Richtmyer, and J. von Neumann, “Statistical methods in neutron diffusion,” Los Alamos Scientific Laboratory Report LAMS-551 (1947).
[64] Cree XP-G LED, http://www.cree.com/led-components-and-modules/
products/xlampc/dis rete-directional/xlamp-xpg.
[65] 李宣皓,表面微結構擴散片設計、製作與應用,國立中央大學光電科學與工程博士論文,中華民國一百零一年。
[66] Evonik Industries AG, http://corporate.evonik.com/en/pages/default.aspx.
[67] F. Costa, L. Costa, and L. Gini, “Optical articles and sol-gel process for their manufacture,” World Intellectual Property Organization WIPO, WO 2004/083137 A1 (2004).
[68] The making of SAVOSIL, Evonik Industries AG, http://www.savosil.com/product/savosil/en/products/making-of-savosil/pages/default.aspx.
[69] C. C. Sun, I. Moreno, S. H. Chung, W. T. Chien, C. T. Hsieh, and T. H. Yang, “Brightness management in a direct LED backlight for LCD TVs,” J. Soc. Inf. Disp. 16, 519-526 (2008).
[70] X. H. Lee, C. C. Lin, Y. Y. Chang, H. X. Chen, and C. C. Sun, “Power management of direct-view LED backlight for liquid crystal display,” Opt. Laser Technol. 46, 142-144 (2013).