跳到主要內容

簡易檢索 / 詳目顯示

研究生: 謝長諺
Chang-Yan Hsieh
論文名稱: 帶狀有限二維量子點陣列的熱電性質
Thermoelectric properties of finite two-dimensional quantum dot arrays with band-like electronic states
指導教授: 郭明庭
Ming-Ting Kuo
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 34
中文關鍵詞: 熱電材料二維量子點陣列熱電優質
外文關鍵詞: Thermoelectric material, two-dimensional, quantum dot arrays, ZT
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 功率因數(PF=S^2 G_e)取決於塞貝克係數(S)和電子電導(G_e)。G_e的增強將不可避免地抑制S,因為它們密切相關,所以,PF的優化非常困難。在這裡,我們從理論上研究了帶有從電極注入的載子的二維量子點(QD)陣列的熱電特性,共振穿隧過程中的二維量子點陣列的Lorenz數滿足Wiedemann-Franz定律,此定律證實了微帶的形成。當微帶中心遠離電極的費米能階時,電子傳輸將在熱電子輔助穿隧過程(TATP)中進行,在這種情況下,帶狀情況下的G_e和原子狀情況下的S可以同時發生。我們透過本文證明,隨著電子態數量的增加,G_e的增強不會抑制TATP中的S。


    The thermal power (PF=S^2 G_e) depends on the Seebeck coefficient (S) and electron conductance (G_e). The enhancement of G_e will unavoidably suppress S because they are closely related. As a consequence, the optimization of PF is extremely difficult. Here, we theoretically investigated the thermoelectric properties of two-dimensional quantum dot (QD) arrays with carriers injected from electrodes. The Lorenz number of 2D QD arrays in the resonant tunneling procedure satisfies the Wiedemann-Franz law, which confirms the formation of minibands. When the miniband center is far away from the Fermi level of the electrodes, the electron transport is in the thermionic-assisted tunneling procedure (TATP). In this regime, G_e in band-like situation and S in atom-like situation can happen simultaneously. We have demonstrated that the enhancement of G_e with an increasing number of electronic states will not suppress S in the TATP.

    摘要 I Abstract II 目錄 III 圖目錄 IV 表目錄 IV 第一章、導論 1 1-1:前言 1 1-2:熱電效應(Thermoelectric effect) 2 (1)席貝克效應(Seebeck effect) 2 (2)帕爾帖效應(Peltier effect) 4 (3)熱電優值(Figure of merit) 5 1-3:文獻回顧 6 1-4:研究動機 7 第二章、系統模型與公式推導 8 2-1:一維量子點奈米線 8 2-2:二維量子點奈米線陣列 9 2-3系統電子總能 11 2-4格林函數分析與電子傳輸係數 12 第三章、熱電轉換特性模擬與分析 14 3-1二維量子點陣列之電子傳輸特性 14 3-2-1穿隧律對熱電特性的影響 16 3-2-2溫度變化對熱電特性的影響 18 3-3電子躍遷強度對熱電特性的影響 19 第四章、結論 23 參考文獻 24

    [1] E. Velmre, "Thomas Johann Seebeck and his contribution to the modern science and technology", Electronics Conference (BEC) 2010 12th Biennial Baltic, Tallinn (2010).
    [2] Y. G. Gurevich and G. N. Logvinov, "Physics of thermoelectric cooling", Semicond. Sci. Technol. 20, R57 (2005).
    [3] A. F. Ioffe, "Semiconductor thermoelements and thermoelectric Cooling", Infosearch Limited London (1957).
    [4] A. Majumdar, "Thermoelectricity in Semiconductor Nanostructures", Science 303, 777 (2004).
    [5] H. J. Goldsmid and R. W. Douglas, "The use of semiconductors in thermoelectric refrigeration", Br. J. Appl. Phys. 5,386 (1954).
    [6] H. J. Goldsmid, A. R. Sheard and D. A. Wright, "The performance of bismuth telluride thermojunctions", Br. J. Appl. Phys. 9,365 (1958).
    [7] L. D. Hicks and M. S. Dresselhaus, "Thermoelectric figure of merit of a one-dimensional conductor", Phys. Rev. B 47, 16631 (1993).
    [8] L. D. Hicks and M. S. Dresselhaus, "Effect of quantum-well structures on the thermoelectric figure of merit", Phys. Rev. B 47, 12727 (1993).
    [9] L. D. Hicks, T. C. Harman, X. Sun, and M. S. Dresselhaus, "Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit", Phys. Rev. B 53, R10493 (1996).
    [10] R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O'Quinn, "Thin-film thermoelectric devices with high room-temperature figures of merit", Nature 413,597 (2001).
    [11] D. L. Nika, E. P. Pokatilov, A. A. Balandin, V. M. Fomin, A. Rastelli, and O. G.Schmidt, Phys. Rev. B 84, 165415 (2011).
    [12] M. Hu and D. Poulikakos, Nano. Lett. 12, 5487 (2012).
    [13] X. Mu, Y. Wang, X Wang, P. Zhang, A. C. To, and T. F. Luo, Sci. Rep. 5, 16697(2015).
    [14] C.R. Kagan, C.B. Murry, Nat. Nanotechnol. 10 (2015) 1013.
    [15] T.C. Harman, P.J. Taylor, M.P. Walsh, B.E. LaForge, Science 297 (2002) 2229.
    [16] E. Talgorn, Y. Gao, M. Aerts1, L.T. Kunneman, J.M. Schins, T.J. Savenije, Marijn A. van Huis, Herre S.J. van der Zant, Arjan J. Houtepen, Laurens D.A. Siebbeles, Nat. Nanotechnol. 6 (2011) 733.
    [17] G. Chen, M.S. Dresselhaus, G. Dresselhaus, J.P. Fleurial, T. Caillat, Int. Mater. Rev. 48 (2003) 45.
    [18] G.D. Mahan, L.M. Woods, Phys. Rev. Lett. 80 (1998) 4016.
    [19] L.D. Lhao, S.H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid, M. G. Kanatzidis, Nature 508 (2014) 373.
    [20] C. Chang, M. Mu, D. He, Y. Pei, C.F. Wu, et al., Science 360 (2018) 778.
    [21] D.D. Fan, H.J. Liu, L. Cheng, P.H. Jiang, J. Shi, X.F. Tang, Appl. Phys. Lett. 105 (2014) 133113.
    [22] B. Su, V. J. Goldman, and J. E. Cunningham, Science, 255, 313 (1992).
    [23] M. Field, C. G. Smith,M. Pepper, D. A. Ritchie, J. E. F. Frost, G. A. C. Jones, and D.G. Hasko, Phys. Rev. Lett. 70, 1311 (1993).
    [24] V. Madhavan, W. Chen, T. Jamneala,M. F. Crommie, and N. S. Wingreen, 280, 567(1998).
    [25] S. M. Cronenwett, T. H. Oosterkamp, and L. P. Kouwenhoven, Science, 281, 540(1998).
    [26] P. Murphy, S. Mukerjee, and J. Moore, Phys. Rev. B 78, 161406(R) (2008).
    [27] D. M.-T. Kuo and Y. C. Chang, Phys. Rev. B 81, 205321 (2010).
    [28] N. Nakpathomkun, H. Q. Xu, and H. Linke, Phys. Rev. B 82, 235428 (2010).
    [29] O. Karlstrom,H. Linke, G. Karlstrom, and A. Wacker, Phys. Rev. B 84, 113415(2011).
    [30] P. Trocha, and J. Barnas, Phys. Rev. B 85, 085408 (2012).
    [31] D. M. T. Kuo and Y. C. Chang, J. Vacuum. Science and Technology, 31, 04D108(2013).
    [32] G. Rossello, R. Lopez, and R. Sanchez, Phys. Rev. B 95,235404 (2017).
    [33] H. Haug, A.P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors, Springer, Heidelberg, 1996.
    [34] D.M.T. Kuo, C.C. Chen, Y.C. Chang, Phys. Rev. B 95 (2017), 075432.
    [35] D.M.T. Kuo, AIP Adv. 10 (2020), 045222.

    QR CODE
    :::