跳到主要內容

簡易檢索 / 詳目顯示

研究生: 何亞諾
Agung Nugroho Ramadhan
論文名稱: 利用暫態電磁法調查建置屏東平原南部沉積層三維電阻率模型
3D Resistivity Modeling of Sedimentary Layers in the Southern Pingtung Plain Using Transient EM Surveys
指導教授: 張竝瑜
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 地球科學學系
Department of Earth Sciences
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 70
中文關鍵詞: 瞬變電磁水文地球物理學近地表地球物理學
外文關鍵詞: Transient Electromagnetic, Hydrogeophysics, Near Surface Geophysics
相關次數: 點閱:20下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 屏東縣以農業活動、都市發展和水產養殖為主,因此用水需求相對較高,合理的水資源管理對於維持淡水供應至關重要,而水文地質建模,在應對水資源管理挑戰中發揮關鍵作用。為了評估水文地質條件,引用了非侵入式地球物理方法,如瞬變電磁 (TEM) 法,根據 TEM 方法之電阻率特性繪製地下沉積物結構相當有效。本研究在屏東南部使用 50m×50m 發射線圈收集 30 個 TEM 站點資料。對每個站點進行逆推處理以產生一維電阻率剖面。然後將一維逆推結果與現有地質數據進行比較以驗證。進一步再使用徑向基底函數插值之PyVista 來估算未知點的資料,建立了屏東南部三維模型。結果表明,遠端扇體存在低電阻率異常,近端扇體存在階地沉積物;另一個值得注意的發現是近岸存在一個低電阻率區,可能受海水-淡水交互作用的影響。


    Pingtung is dominated by agricultural activity, urban development, and aquaculture, resulting in relatively high water demand. Proper water management is essential to sustain the fresh water supply, and hydrogeological modeling plays a key role in addressing water management challenges. Hydrogeological models help analyze the interaction between groundwater and natural dynamics. To estimate hydrogeological conditions, non-invasive geophysical methods such as the transient electromagnetic (TEM) method are suitable. The TEM method maps subsurface structures based on resistivity properties, making it effective for identifying hydrogeological models since sediment characteristics can be differentiated by resistivity. In this study, we collected data from 30 TEM sites in Southern Pingtung using a 50m×50m transmitter loop. Each site was processed separately to generate a 1D resistivity profile. The 1D inversion results were then compared with available geological data for validation. A 3D model was constructed using PyVista, with radial basis function interpolation applied to estimate data at unknown points. The results reveal low-resistivity anomalies on the distal fan and terrace deposits on the proximal fan. An other notable finding is a low-resistivity zone near the coast, likely influenced by seawater-freshwater interactions.

    Chinese Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i English Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix I Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2.1 TEM Application to Estimate Hydrogeological Model . . . . . . . . 1 1.2.2 Pingtung Plain Hydrogeology . . . . . . . . . . . . . . . . . . . . . 2 II Survey Area and Geological Condition 3 2.1 Survey Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Geological Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 III Methodology 7 3.1 General Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.2 TEM Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.3 Field Acquisition Configuration . . . . . . . . . . . . . . . . . . . . . . . . 11 3.4 Signal Pre-Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.5 Inverse Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.6 3D Interpolated Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.6.1 Radial basis Function Interpolation . . . . . . . . . . . . . . . . . . 14 3.6.2 PyVista Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.6.3 Paraview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 IV Result and Discussion 17 4.1 Resistivity Distribution of the Sediment . . . . . . . . . . . . . . . . . . . 17 4.2 1D Resistivity Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.3 TEM 3D Interpolated Model . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.4 TEM Result Comparison with the Available Borehole Well . . . . . . . . . 20 V Conclusion 31 5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.2 Future Work Recommendation . . . . . . . . . . . . . . . . . . . . . . . . 31 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 A TEM 1D Results on Each Sites 37 B TEM Site Coordinates 53

    Amato, F., Pace, F., Vergnano, A., & Comina, C. (2021). Tdem prospections for inland groundwater exploration in semiarid climate, island of fogo, cape verde. Journal of Applied Geophysics, 184. doi: doi.org/10.1016/j.jappgeo.2020.104242
    Archie, G. (1942). The electrical resistivity log as an aid in determining some reservoir characteristics. Transaction of the AIME, 146, 54–62. doi: doi.org/10.2118/942054 -G
    Auken, E., Foged, N., Larsen, J. J., Lassen, K. V. T., Maurya, P. K., Dath, S. M., & Eiskjær, T. T. (2019). ttem —a towed transient electromagnetic system for detailed 3d imaging of the top 70 m of the subsurface. Geophysics, 84, E13-E22. doi: 10.1190/GEO2018-0355.1
    Chang, C. P., Chang, T. Y., Wang, C. T., Kuo, C. H., & Chen, K. S. (2004). Land-surface deformation corresponding to seasonal ground-water fluctuation, determining by sar interferometry in the sw taiwan. Mathematics and Computers in Simulation, 67, 351–359. doi: doi:10.1016/j.matcom.2004.06.003
    Chen, W.-S., Ridgway, K. D., Horng, C.-S., Chen, Y.-G., Shea, K.-S., & Yeh, M.-G. (2001). Stratigraphic architecture, magnetostratigraphy, and incised-valley systems of the pliocene-pleistocene collisional marine foreland basin of taiwan. Geological Society of America, 10, 1249–-1271. doi: doi.org/10.1130/0016-7606(2001)113
    Chen, W.-S., Yeh, J.-J., & Yu, S.-J. (2019). Late cenozoic exhumation and erosion of the taiwan orogenic belt: New insights from petrographic analysis of foreland basin sediments and thermochronological dating on the metamorphic orogenic wedge. Tectonophysics, 750, 56–69. doi: doi.org/10.1016/j.tecto.2018.09.003
    Chen, Y.-G., Hung, J.-H., Lai, K.-Y., Lin, Y.-N. N., Wilcox, T., & Mueller, K. (2007). River terrace development in response to folding above active wedge thrusts in houli, central taiwan. Journal of Asian Earth Sciences, 31, 240–250. doi: doi.org/10.1016/ j.jseaes.2006.07.023
    Cheng, Y., Lee, C.-H., Tan, Y.-C., & Yeh, H.-F. (2009). An optimal water allocation for an irrigation district in pingtung county, taiwan. Irrigation and Drainage, 58, 287-306. doi: 10.1002/ird.411
    Christiansen, A. V., & Auken, E. (2012). A global measure for depth of investigation. Geophysics, 77, 1JA-Z106. doi: doi.org/10.1190/geo2011-0393.1
    Danielsen, J. E., Aukena, E., Jørgensena, F., Søndergaard, V., & Sørensen, K. I. (2003). The application of the transient electromagnetic method in hydrogeophysical surveys. Journal of Applied Geophysics, 53, 181-198. doi: 10.1016/ j.jappgeo.2003.08.004
    Dibaj, M., Javadi, A. A., Akrami, M., ke, K.-Y., Farmani, R., Tan, Y.-C., & Chen, A. S. (2020). Modelling seawater intrusion in the pingtung coastal aquifer in taiwan, under the influence of sea-level rise and changing abstraction regime. Hydrogeology Journal. doi: doi.org/10.1007/s10040-020-02172-4
    Dibaj, M., Javadi, A. A., Akrami, M., ke, K.-Y., Farmani, R., Tan, Y.-C., & Chen, A. S. (2021). Coupled three-dimensional modelling of groundwater-surface water interactions for management of seawater intrusion in pingtung plain, taiwan. Journal of Hydrology: Regional Studies. doi: doi.org/10.1016/j.ejrh.2021.100850
    Dickinson, J. E., Pool, D. R., Groom, R. W., & Davis, L. J. (2010). Inference of lithologic distributions in an alluvial aquifer using airborne transient electromagnetic surveys. Geophysics, 75, WA149–WA161. doi: doi.org/10.1190/1.3464325 32GSMMA. (2023). Hydrogeological database combined query platform. Retrieved 2025-04- 29, from https://hydro.geologycloud.tw/map?locale=en
    Gómez, E., Larsson, M., Dahlin, T., Barmen, G., & Rosberg, J. (2019). Alluvial aquifer thickness and bedrock structure delineation by electromagnetic methods in the highlands of bolivia. Environtmental Earth Sciences, 78. doi: doi.org/10.1007/ s12665-019-8074-x
    Hansen, C. D., & Johnson, C. R. (2011). Visualization handbook. Elsevier.
    Hardy, R. L. (1971). Multiquadric equations of topography and other irregular surfaces. Journal of Geophysical Research, 76, 1905-1915. doi: https://doi.org/10.1029/ JB076i008p01905
    Heagy, L. J., Kang, S., Capriotti, J., Fournier, D., Cockett, R., & Oldenburg, D. W. (2024). Opportunities for open-source software to accelerate research in applied geophysics. The Leading Edge, 43, 84-94. doi: 10.1190/tle43020084.1
    Hsu, K.-C., Wang, C.-H., Chen, K.-C., Chen, C.-T., & Ma, K.-W. (2007). Climateinduced hydrological impacts on the groundwater system of the pingtung plain, taiwan. Hydrogeology Journal, 15, 903-913. doi: 10.1007/s10040-006-0137-x
    Huang, P.-S., & Chiu, Y.-C. (2018). A simulation-optimization model for seawater intrusion management at pingtung coastal area, taiwan. Water, 10. doi: doi.org/ 10.3390/w10030251
    Jang, C.-S., Chen, C.-F., Liang, C.-P., & Chen, J.-S. (2015). Combining groundwater quality analysis and a numerical flowsimulation for spatially establishing utilization strategies forgroundwater and surface water in the pingtung plain. Journal of Hydrology, 533, 541–556. doi: dx.doi.org/10.1016/j.jhydrol.2015.12.023
    Kalisperi, D., Kouli, M., Vallianatos, F., Soupios, P., Kershaw, S., & Lydakis-Simantiris, N. (2018). A transient electromagnetic (tem) method survey in north-central coast of crete, greece: Evidence of seawater intrusion. Geosciences, 8. doi: doi.org/ 10.3390/geosciences8040107
    Khare, S. K., McLachlan, P., Maurya, P. K., & Larsen, J. J. (2023). An optimized and hybrid gating scheme for the suppression of very low-frequency radios in transient electromagnetic systems. Geoscientific Instrumentation, Methods and Data Systems, 13, 27-41. doi: doi.org/10.5194/gi-13-27-2024
    Kirsch, R. (2009). Groundwater geophysics. Springer Science & Business Media.
    Koa, M. D., Johan, H., & Sourin, A. (2017). Interactive screenspace fragment rendering for direct illumination from area lights using gradient aware subdivision and radial basis function interpolation. Computers & Graphics, 17, 37-50. doi: https:// doi.org/10.1016/j.cag.2017.01.003
    Lall, U., Josset, L., & Russo, T. (2020). A snapshot of the world’s groundwater challenges. Annual Review of Environment and Resources, 45, 171-194. doi: doi.org/10.1146/ annurev-environ-102017-025800
    Leite, D. N., Bortolozo, C. A., Porsani, J. L., Jr, M. A. C., Campaña, J. D. R., dos Santos, F. A. M., … Stangari, M. C. (2018). Geoelectrical characterization with 1d ves/tdem joint inversion in urupês-sp region, paraná basin: Applications to hydrogeology. Journal of Applied Geophysics, 151, 205-220. doi: doi.org/10.1016/ j.jappgeo.2018.02.022
    Li, R., Hu, X., Xu, D., Liu, Y., & Yu, N. (2020). Characterizing the 3d hydrogeological structure of a debris landslide using the transient electromagnetic method. Journal of Applied Geophysics, 175. doi: doi.org/10.1016/j.jappgeo.2020.103991
    Lin, K.-P., Chou, P.-C., & Dong-Sin, S. (2016). To study hydrological variabilities by using surface and groundwater coupled model –a case study of pingtung plain, taiwan. Procedia Engineering, 154, 1034-1042. doi: 10.1016/j.proeng.2016.07.593 Lines, L., & treitel, S. (1984). Tutorial a review of least-squares inversion and its application to geophysical problems. Geophysical Prospecting, 32, 159-186. doi: https://doi.org/10.1111/j.1365-2478.1984.tb00726.x
    Loke, M., & Barker, R. (1996). Rapid least-squares inversion of apparentresistivity pseudosections by a quasi-newton method. Geophysical Prospecting, 44, 131-152. doi: https://doi.org/10.1111/j.1365-2478.1996.tb00142.x
    Martínez-Moreno, F., Monteiro-Santos, F., Madeira, J., Bernardo, I., Soares, A., Esteves, M., & Adão, F. (2016). Water prospection in volcanic islands by time domain electromagnetic (tdem) surveying: The case study of the islands of fogo and santo antão in cape verde. Journal of Applied Geophysics, 134, 226-324. doi: dx.doi.org/ 10.1016/j.jappgeo.2016.09.020
    Michael, H. A., Post, V. E. A., Wilson, A. M., & Werner, A. D. (2017). Science, society, and the coastal groundwater squeeze. Science, society, and the coastal groundwater squeeze, 53, 2610-2617. doi: doi.org/10.1002/2017WR020851
    Muchingami, I., Hlatywayo, D., Nel, J., & Chuma, C. (2012). Electrical resistivity survey for groundwater investigations and shallow subsurface evaluation of the basalticgreenstone formation of the urban bulawayo aquifer. Physics and Chemistry of the Earth, 50-52, 44-51. doi: doi.org/10.1016/j.pce.2012.08.014 Narvaez-Montoya, C., Mahlknecht, J., Torres-Martínez, J. A., Mora, A., & Bertrand, G.
    (2023). Seawater intrusion pattern recognition supported by unsupervised learning: A systematic review and application. Science of the Total Environment, 864. doi: doi.org/10.1016/j.scitotenv.2022.160933 Ryu, S., Song, J. J., & Lee, G. (2025). Radar–rain gauge merging for high-spatiotemporal resolution rainfall estimation using radial basis function interpolation. Remote Sensing, 17, 530. doi: https://doi.org/10.3390/rs17030530
    Santos, F. A. M., & El-Kaliouby, H. M. (2010). Comparative study of local versus global methods for 1d joint inversion of direct current resistivity and time-domainelectromagnetic data. Near Surface Geophysics, 8, 135-143. doi: 10.3997/1873-0604 .2009056
    Sasaki, Y. (1992). Resolution of resistivity tomography inferred from numerical simulation. Geophysical Prospecting, 40, 453-463. doi: https://doi.org/10.1111/ j.1365-2478.1992.tb00536.x
    Schroeder, W., Martin, K., & Lorensen, B. (2006). The visualization toolkit. Ingram.
    Sharlov, M. V. (2015). Fastsnap digital electroprospecting systemversion 1.0. SIGMA LLC.
    Skala, V. (2016). A practical use of radial basis functions interpolation and approximation. Editorial Universitaria de la Republica de Cuba, 37, 137.
    Sullivan, C. B., & Kaszynski, A. A. (2019). Pyvista: 3d plotting and mesh analysis through a streamlined interface for the visualization toolkit (vtk). The Journal of Open Source Software, 4, 37. doi: 10.21105/joss.01450
    Ting, C.-S., Zhou, Y., Vries, J., & Simmers, I. (1998). Development of a preliminary ground water flow model for water resources management in the pingtung plain, taiwan. Groundwater, 36, 20-36. doi: doi.org/10.1111/j.1745-6584.1998.tb01062.x
    Tran, Q.-D., Ni, C.-F., Lee, I.-H., Truong, M.-H., & Liu, C.-J. (2020). Numerical modeling of surface water and groundwater interactions induced by complex fluvial landforms and human activities in the pingtung plain groundwater basin, taiwan. Applied 34Sciences, 10. doi: doi.org/10.3390/app10207152
    Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., … SciPy 1.0 Contributors (2020). SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17, 261–272. doi: 10.1038/ s41592-019-0686-2
    Yeh, Y.-L., Wu, C.-Y., Chen, Z.-M., & Chiu, T.-P. (2023). Safe groundwater level estimation in pingtung plain, taiwan. @ater, 15. doi: doi.org/10.3390/w15162947
    Zhu, Z., Shan, Z., Pang, Y., Wang, W., Chen, M., Li, G., … Revil, A. (2024). The transient electromagnetic (tem) method reveals the role of tectonic faults in seawater intrusion at zhoushan islands (hangzhou bay, china). Engineering Geology, 330. doi: doi.org/10.1016/j.enggeo.2024.107425

    QR CODE
    :::