跳到主要內容

簡易檢索 / 詳目顯示

研究生: 謝大誠
Tai-shin Chia
論文名稱: 一體式植牙穩固度檢測裝置之設計製作及驗證
Design and Implementation of Detection Devices for Dental Implantation Stability
指導教授: 潘敏俊
Min-Chun Pan
口試委員:
學位類別: 碩士
Master
系所名稱: 生醫理工學院 - 生物醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 68
中文關鍵詞: 牙科植體磁激振霍爾效應共振頻率分析
外文關鍵詞: dental implant, Hall effect sensor, resonance frequency analysis, magnetism excitation
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用非接觸式磁激振與感應原理於人工植牙術後穩固度檢測,其檢測方式基於結構共振頻率檢測法。為驗證裝置之量測有效性,線性霍爾感應器 測得植體之共振頻率將與市售檢測裝置Osstell® ISQ測得之結果作相關性分析,同時利用電容式位移計量測植體實際位移量作為對照。研究分兩部分,第一部分主要介紹電磁與線性霍爾效應之原理,並且說明系統(電磁鐵,植體,線性霍爾感應器)運作方式 。 第二部分利用體外實驗與動物實驗,驗證並瞭解其臨床使用之特性。此外藉由實驗說明轉移函數與均方根值使線性霍爾感應器測得植體共振頻率之方式 。也透過電容式位移計瞭解Osstell® ISQ 之機制,作為未來裝置改良標準。
    經動物實驗10週觀察植體頻率變化,兔子脛骨長軸測得(3916±364 至5696±153 Hz),其短軸測得(5813±783 至 6026±154 Hz)。結果顯示電磁激振感應 與 Osstell® ISQ 測得結果高度相關(長軸R2 = 0.97-0.96, 短軸 R2 =0.57-0.4),但隨著時間癒合植牙穩固度提升以及軟組織包覆植體,磁激振強度不足導致實驗結果不理想。從研究指出, 非接觸式磁激振與感應裝置可同側激振與接收並具有發展性也成功將裝置一體化。


    The aim of this thesis was to develop a detection device for dental implantation stability, based on resonance frequency method by using magnetism excitation and measurement. For the implementation and performance verification of the new designed EM instrument, the Osstell® ISQ and its SmartPegTM were used as a benchmark for comparison. Especially to verify the sensing performance of the dual Hall-effect sensor, a high precision non-contact displacement sensor was used to capture the actual displacement response of the TestPegTM for RF value comparison. The thesis consists of two parts. First, brief description of basic concepts of a electromagnetism, the Hall effect theory, and the system (electromagnet, implant, Hall-effect sensor) overview. Secondly, the in-vitro and in-vivo experimental model was designed to verify the performance of the EM instrument, and additional experiment to explain the output of the EM instrument. Besides, a capacitive displacement sensor was employed to capture the Osstell® ISQ excitation signal for its mechanism brief description. The comparison of the EM and Osstell® ISQ excitation signal was capture by the Hall effect sensor.
    From a 10-week experiment on the RF observation on the rabbit tibia shows measurement on the axial direction (3916±364 to 5696±153 Hz) and lateral direction (5813±783 to 6026±154 Hz). The result shows EM instrument is highly correlated with the result of Osstell® ISQ (axial: R2 = 0.97-0.96, lateral: R2 =0.57-0.4). The Hall effect sensor was failed to detect response at the last 2 experiments, due to the EM instrument was self-assembly by different components, and the excitation response of the EM instrument at high frequency was not strong enough to vibrate the object. The study shows the non-contact EM instrument is feasible for detection on dental implantation stability.

    摘要 i Abstract ii 誌謝 iii Contents iv List of Table x Chapter 1 Introduction 1 1.1 Research Background and Motivation 1 1.2 Literature Review 1 1.2.1 Invasive Methods 1 1.2.2 Non-invasive Methods 2 1.2.2.1 Radiographic observation 2 1.2.2.2 Periotest 2 1.2.3 Resonance Frequency Method 2 1.2.3.1 Osstell 2 1.2.3.2 Implomate 3 1.2.3.3 Noncontact Vibro-Acoustic RF Detection 3 1.2.3.4 Noncontact electromagnetic vibration device 4 1.3 Framework 5 Chapter 2 Detection Mechanism for Dental Implantation Stability 7 2.1 Detection of Structural Resonance 7 2.1.1 Resonance Frequency of Cantilever Structure 7 2.1.2 Vibration measurements 8 2.1.3 Signal Processing 9 2.1.3.1 Fast Fourier Transform 9 2.1.3.2 Root-Mean Square (R.M.S) 9 2.1.3.3 Transfer Function 10 2.2 Basic Magnetism Properties 11 2.2.1 Magnetic Field of a Permanent Magnet 11 2.2.2 Attraction and Repulsion of Magnet 12 2.2.3 Electromagnetism 12 2.2.4 The Magnitude of Magnetism 13 2.2.4.1 Magnetic Flux Density 13 2.2.4.2 Magnetic Field of Current 13 2.2.4.3 Relationship between H and B 14 2.3 Electromagnet 14 2.3.1.1 Magnetic Field in a Loop 14 2.3.1.2 Solenoid 15 2.4 Hall-effect Sensing 16 2.4.1 Basic theory of the Hall-effect 17 2.4.2 Basic Hall effect sensors 18 Chapter 3 Design of Detection Devices 19 3.1 Detection Devices Overview 20 3.2 Devices Component Overview 22 3.2.1 Electro-Magnet 22 3.2.2 Ratiometric Linear Hall-effect Sensor 23 3.2.3 LabVIEW User/Machine Interface of EM Measuring Device 24 Chapter 4 Device Implementation and Performance Verification 26 4.1 Experimental Procedure 26 4.1.1 EM Detection Device 27 4.1.2 Osstell® ISQ Probe Exciter 27 4.1.3 Piezo Buzzer 28 4.2 Devices Verification on TestPeg 30 4.3 In Vivo Animal Model for Devices Measurement 30 Chapter 5 Experimental Results and Discussion 33 5.1 Devices Measurement on TestPeg 33 5.2 Disscusion on TestPeg Experimention 35 5.2.1 Significance of Peak and Valley on DHE Sensing Spectrum 35 5.2.2 Computation Technique of Dual Hall Effect Sensors 38 5.2.3 Mechanism of Osstell Excitation 40 5.2.4 Comparison of Electromagnet and Osstell® ISQ Probe 43 5.3 In-vivo Experimental Result 44 In-vivo Experimental Discussion 47 Chapter 6 Conclusions and Future Work 49 Reference 51 Appendix A: Linear Regression Analysis Result (Axial Direction) 53 Appendix B: Linear Regression Analysis Result (Lateral Direction) 57

    Reference
    [1] P.-I. Brånemark, G. A. Zarb, and T. Albrektsson, Tissue-integrated prostheses: osseointegration in clinical dentistry: Quintessence, 1985.
    [2] R. Gapski, H. L. Wang, P. Mascarenhas, and N. P. Lang, "Critical review of immediate implant loading," clinical oral implants research, vol. 14, pp. 515-527, 2003.
    [3] C. Johansson and T. Albrektsson, "Integration of screw implants in the rabbit: a 1-year follow-up of removal torque of titanium implants," The International journal of oral & maxillofacial implants, vol. 2, p. 69, 1987.
    [4] L. Ericson, L. Sennerby, and P. Thomsen, "Ultrastructure of the bone-titanium interface in rabbits," Journal of Materials Science: Materials in Medicine, vol. 3, pp. 262-271, 1992.
    [5] S. Sunden, K. Gröndahl, and H. G. Gröndahl, "Accuracy and precision in the radiographic diagnosis of clinical instability in Brånemark dental implants," clinical oral implants research, vol. 6, pp. 220-226, 1995.
    [6] W. Schulte, B. d'Hoedt, D. Lukas, L. Muhlbradt, F. Scholz, J. Bretschi, D. Frey, H. Gudat, M. Konig, and M. Markl, "[Periotest--a new measurement process for periodontal function]," Zahnarztliche Mitteilungen, vol. 73, p. 1229, 1983.
    [7] M. Hayashi, C. Kobayashi, H. Ogata, M. Yamaoka, and B. Ogiso, "A no‐contact vibration device for measuring implant stability," clinical oral implants research, vol. 21, pp. 931-936, 2010.
    [8] H.-B. Zhuang, W.-S. Tu, M.-C. Pan, J.-W. Wu, C.-S. Chen, S.-Y. Lee, and Y.-C. Yang, "Non-contact Vibro-acoustic Detection Technique for Dental Osseointegration Examination," Journal of Medical and Biological Engineering, vol. 33, pp. 35-43, 2013.
    [9] "OsstellTM user’s manual," ed. Göteborg,Sweden: Integration Diagnostics AB.
    [10] V. Pattijn, S. Jaecques, E. De Smet, L. Muraru, C. Van Lierde, G. Van der Perre, I. Naert, and J. Vander Sloten, "Resonance frequency analysis of implants in the guinea pig model: influence of boundary conditions and orientation of the transducer," Medical engineering & physics, vol. 29, pp. 182-190, 2007.
    [11] Y. Ito, D. Sato, S. Yoneda, D. Ito, H. Kondo, and S. Kasugai, "Relevance of resonance frequency analysis to evaluate dental implant stability: simulation and histomorphometrical animal experiments," clinical oral implants research, vol. 19, pp. 9-14, 2008.
    [12] N. Meredith, D. Alleyne, and P. Cawley, "Quantitative determination of the stability of the implant‐tissue interface using resonance frequency analysis," clinical oral implants research, vol. 7, pp. 261-267, 1996.
    [13] N. Meredith, K. Books, B. Fribergs, T. Jemt, and L. Sennerby, "Resonance frequency measurements of implant stability in viva. A cross‐sectional and longitudinal study of resonance frequency measurements on implants in the edentulous and partially dentate maxilla," clinical oral implants research, vol. 8, pp. 226-233, 1997.
    [14] N. Meredith, F. Shagaldi, D. Alleyne, L. Sennerby, and P. Cawley, "The application of resonance frequency measurements to study the stability of titanium implants during healing in the rabbit tibia," clinical oral implants research, vol. 8, pp. 234-243, 1997.
    [15] S. Wang, G. Liu, K. Hoang, and Y. Guo, "Identifiable range of osseointegration of dental implants through resonance frequency analysis," Medical engineering & physics, vol. 32, pp. 1094-1106, 2010.
    [16] "Osstell Mentor User Manual," ed. Göteborg,Sweden: Integration Diagnostics AB.
    [17] H.-M. Huang, L.-C. Pan, S.-Y. Lee, C.-L. Chiu, K.-H. Fan, and K.-N. Ho, "Assessing the implant/bone interface by using natural frequency analysis," Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, vol. 90, pp. 285-291, 2000.
    [18] W.-J. Chang, S.-Y. Lee, C.-C. Wu, C.-T. Lin, Y. Abiko, N. Yamamichi, and H.-M. Huang, "A newly designed resonance frequency analysis device for dental implant stability detection," Dent Mater J, vol. 26, pp. 665-671, 2007.
    [19] M. Yamane, M. Yamaoka, M. Hayashi, I. Furutoyo, N. Komori, and B. Ogiso, "Measuring tooth mobility with a no‐contact vibration device," Journal of periodontal research, vol. 43, pp. 84-89, 2008.
    [20] T. Agilent, "The fundamentals of modal testing," Tech. Rep. 5954-7957E, Agilent Technologies,2000.
    [21] R. Kurtus. (2012). Detection of a Magnetic Field by Ron Kurtus - Succeed in Understanding Physics: School for Champions. Available: http://www.school-for-champions.com/science/magnetic_detection.htm
    [22] W. Storr. (2013). Electronics Tutorial about Magnetism. Available: http://www.electronics-tutorials.ws/electromagnetism/magnetism.html
    [23] L. Tauxe, R. F. Butler, R. Van der Voo, and S. K. Banerjee, Essentials of paleomagnetism: University of California Press, 2010.
    [24] W. Hayt and J. Buck, Engineering Electromagnetics: McGraw-Hill Education, 2011.
    [25] C. R. Nave. (2000). HyperPhysics. Available: http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html
    [26] G. Pepka, "Position and level sensing using Hall-effect sensing technology," Sensor Review, vol. 27, pp. 29-34, 2007.
    [27] W. D. McCall and E. J. Rohan, "A linear position transducer using a magnet and Hall effect devices," Instrumentation and Measurement, IEEE Transactions on, vol. 26, pp. 133-136, 1977.
    [28] E. Ramsden, Hall-Effect Sensor Theory and Application,Second Edition: Newnes, 2006.
    [29] R. J. Parker, "Permanent magnet guidelines," Magnetic Materials Producers Association, Chicago, p. 17, 1998.
    [30] Honeywell, HALL EFFECT SENSING AND APPLICATION: Honeywell Inc., 2013.
    [31] E. H. Hall, "On a New Action of the Magnet on Electric Currents," American Journal of Mathematics, vol. 2, pp. p.287-292, 1879.
    [32] L. Williams, "Electromagnetic Levitation," undergraduate, Department of Electrical Engineering, University of Cape Town, 2005.
    [33] K. A. Lilienkamp, "Low-cost magnetic levitation project kits for teaching feedback system design," presented at the IEEE, Boston, Massachusetts, 2004.
    [34] E. G. Inc., "Electromagnet," EEM20B datasheet, Everlead Global Inc., 2012.

    QR CODE
    :::