跳到主要內容

簡易檢索 / 詳目顯示

研究生: 鄭竣宇
Zheng-Jun-Yu
論文名稱: 以水熱法於基板上成長氧化鋅錫材料之研究
Synthesis of zinc tin oxide on substrates by hydrothermal method
指導教授: 陳一塵
I-Chen Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學與工程研究所
Graduate Institute of Materials Science & Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 62
中文關鍵詞: 水熱法氧化鋅羅丹明錫酸鋅
外文關鍵詞: hydrothermal method, zinc oxide, Rhodamine, zinc tin oxide
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用水熱法於基板上合成氧化鋅錫 (ZTO),將含有鋅和錫離子之水溶液,依不同的鋅/錫莫耳比與鹼性礦化劑氫氧化鈉混合後,置於密封壓力釜中,在低溫下,透過在水熱溫度 80°C、水熱反應時間為 2.5 小時的控制長晶條件,讓鋅與錫粒子間充分交互作用,並形成高結晶性的 ZTO 粉末。實驗結果經由 XRD 發現,以Zn/Sn 莫耳比為 1 : 3 條件下,可達到密度最佳的 ZTO 奈米顆粒,由 SEM 照片中觀察到 ZTO 的表面形態呈現立方體,相較於其他條件的產物,不僅顆粒形狀尺寸一致且散佈也較為均勻;拉曼光譜顯示在 538 cm-1 和 676 cm-1 有二個 ZTO 特性峰值,由此可證明此奈米顆粒是含有鈣鈦礦結構的 ZTO奈米晶體,實驗結果由 XRD 發現,以反應時間 2.5 小時 (80 °C, Zn : Sn = 1 : 3 )條件下,可達到結晶性最佳的 ZTO 奈米顆粒;使用羅丹明 (Rhodamine 6G, R6G) 染劑溶液之降解反應作為ZTO顆粒光觸媒活性之測定。


    The precursor powders including Zn and Sn ion in different molar ratios were utilized to synthesize ZnSnO3 (ZTO) with NaOH as a basic mineralizer via hydrothermal method. Under low temperature 80°C and 2.5 hours reaction time, the solution in a sealed autoclave pre-sented to make the Zn and Sn ion precursor reaction. The solution was heated to form highly crystallinity ZTO particles. The crystal structure of experimental results is investigated by X-ray diffraction (XRD). The synthesized nanoparticles with Zn / Sn molar ratios 1 : 3 showed highly crystalline ZTO. From the scanning electron microscopy (SEM) images, the cubic-like shape of ZTO nanoparticles can be observed. The parti-cles were relatively uniform and well-dispersed. The sample showed Raman spectra peak of 538 cm-1 and 676 cm-1 that the ZTO sample had a perovskite structure. The photocatalytic activity of the ZTO was examined using the degradation of Rhodamine as an indicator.

    致謝 I 摘要 II Abstract III 目錄 IV 圖目錄 VII 表目錄 IX 第一章 緒 論 1 1-1前言 1 1-2研究動機與目的 2 第二章 基本原理及文獻回顧 3 2-1 氧化錫鋅 (ZTO) 簡介 3 2-2 ZTO 之製備方法 4 2-2-1 水熱法 5 2-2-2 溶膠凝膠法 7 2-2-3 共沉法 9 2-2-4 熱蒸鍍法 10 2-3 於基板上成長ZTO顆粒 12 2-4 光觸媒 13 2-4-1 光觸媒介紹 13 2-4-2 光觸媒原理與應用 14 2-4-3 影響光催化效率因子 16 第三章 實驗研究方法與分析儀器 18 3-1 實驗流程 19 3-1-1 基板清洗流程 19 3-1-1 氧化鋅晶種層 20 3-1-2 ZTO顆粒成長 20 3-2 ZTO特性量測 22 3-2-1 場發射掃描式電子顯微鏡 22 3-2-2 紫外光光譜儀 22 3-2-3 X光繞射儀 23 3-2-4 拉曼散射光譜 23 第四章 結果與討論 24 4-1基板對氧化鋅錫奈米顆粒成長的影響 24 4-1-1 表面形貌分析 24 4-1-2成長機制 26 4-2氫氧根離子的濃度對氧化鋅錫成長的影響 28 4-3 反應溫度以及時間對實驗結果的影響 32 4-3-1表面形貌分析 32 4-3-2 X光繞射圖分析 36 4-4 反應物的比例對實驗結果的影響 37 4-4-1 氧化鋅奈米柱製備 38 4-4-2 氧化鋅錫顆粒製備 39 4-4-3 表面形貌分析 41 4-4-4 XRD 繞射分析 42 4-4-5 拉曼光譜分析 43 4-6 氧化鋅錫光催化特性研究 44 第五章 結論 45 參考文獻 46

    [1] K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono
    , 2004, Microelectron. Eng., 72, 294.
    [2] T. Lana-Villarreal, G. Boschloo, and A. Hagfeldt, 2007, J. Phys.
    Chem. C., 111, 5549.
    [3] M. Miyauchi, Z. Liu, Z. G. Zhao, S. Anandan, and K. Hara, 2010,
    Chem. Commun., 46, 1529.
    [4] B. Tan, E. Toman, Y. Li, and Y. Wu, 2007, J. Am. Chem. Soc.,
    129, 4162.
    [5] Z. Q. He, L. Z. Xiong, Z. B. Xiao, M. Y. Ma, X. M. Wu, and K. L.
    Huang, 2005, Trans. Nonferrous Met. Soc., 15, 1420.
    [6] A, Rong, X. P. Gao, G. R. Li, T. Y. Yan, H. Y. Zhu, J. Q. Qu, and D.
    Y. Son, 2006, J. Phys. Chem., 110, 14754.
    [7] J. Xu, H. Zhang, Q. Pan, Q. Xiang, and C. Li, 2007,
    J. Chin. Ceram . Soc., 35, 978.
    [8] X. Fu, X. Wang, J. Long, Z. Ding, T. Yan, G. Zhang, Z. Zhang, and
    H. Lin, 2009, J. Solid State Chem., 182, 517.
    [9] S. Wang, Z. Yang, M. Lu, Y. Zhou, G. Zhou, Z. Qiu, H. Zhang, and
    A. Zhang, 2007, Mater. Lett., 61, 3005.
    [10] X. Lou, X. Jia, J. Xu, S. Liu, and Q. Gao, 2006, Mater. Sci. Eng.,
    432, 221.
    [11] W. Cun, W. Xinming, Z. Jincai, M. Bixian, S. Guoying, P. Ping’an,
    and Jiamo F 2002 J. Mater. Sci. 37 2989
    [12] Y. Zhang, M. Guo, M. Zhang, C. Yang, T. Ma, and X. Wang, 2007,
    J. Cryst. Growth., 308, 99.
    [13] S. Baruah, and J. Dutta, 2009, Sci. Technol. Adv. Mater., 10, 3001.
    [14] R. He, M. Law, R. Fan, F. Kim, and P. Yang, 2002, Nano Lett.,
    2, 1109.
    [15] J. Hu, Y. Bando, and Z, Liu, 2003, Adv. Mater., 15, 1000.
    [16] J. Q. Hu, X. M. Meng, Y. Jiang, C. S. Lee, and S. T. Lee, 2003,
    Adv. Mater., 15 70.
    [17] Y, Jiang, X. M. Meng, J. Liu, Z. R. Hong, C. S. Lee, and S. T. Lee,
    2003, Adv. Mater., 15, 1195.
    [18] R. Q. Zhang, Y. Lifshitz, and S. T. Lee, 2003, Adv. Mater., 15, 635.
    [19] Z. Deng, J. Qi, Y. Zhang, Q. Liao, Y. Huang, and J. Cao, 2008,
    Acta. Phys., 24, 193.
    [20] E. C. Walter, B. J. Murray, F. Favier, and R. M. Penner, 2003,
    Adv. Mater., 15, 396.
    [21] H. Yan, R. He, J. Johnson, M. Law, R. J .Saykally, and P. Yang,
    2003, J. Am. Chem. Soc., 125, 4728.
    [22] M. P. Mallin, and C. J. Murphy, 2002, Nano Lett., 2, 1235.
    [23] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim,
    and H. Yan, 2003, Adv. Mater., 15, 353.
    [24] G. R. Patzke, F. Krumeich and R. Nesper, 2002, Angew. Chem.,
    41, 2446
    [25] J. Zeng, M. Xin, K. Li, H. Wang, H. Yan and W. Zhang, 2008,
    J. Phys. Chem., 112, 4159.
    [26] J. Jie, G. Wang, X. Han, J. Fang, Q. Yu, Y. Liao, B. Xu, Q. Wang ,
    and J. G. Hou, 2004, J. Phys. Chem., 108, 8249.

    [27] G. Fu, H. Chen, Z. Chen, J. Zhang and H. Kohler, 2002, Sensors
    Actuators B, 81, 308.
    [28] A. Kurz, K. Brakecha, J. Puetz, and M. A. Aegerter, 2006, Thin Solid
    Films, 502, 212.
    [29] N. Nikoli´c, T. Srekovi, and M. M. Risti, 2001, J. Eur. Ceram. Soc.,
    21, 2071.
    [30] J. Xu, X. Jia, X. Lou, and J. Shen, 2006, Solid-State Electron.,
    50, 504.
    [31] E. L. Foletto, S. L. Jahn, and R. De Fatima Peralta Muniz Moreira ,
    2009, J. Appl. Electrochem., 40, 59.
    [32] H. Fan, Y. Zeng, X. Xu, N. Lv, and T. Zhang, 2010, Sensors
    Actuators., 10,026
    [33] M. C. Carotta, 2009, Sensors Actuators B, 137, 164.
    [34] S. M. Chou, L. G. Teoh, W. H. Lai, Y. H. Su, and M. H. Hon, 2006,
    Sensors, 6, 1420.

    QR CODE
    :::