跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李儼鵬
Yeng-peng Lee
論文名稱: 二次太陽能集光器
Second Stage Solar Concentrator
指導教授: 梁肇文
Chao-wen Liang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 照明與顯示科技研究所
Graduate Institute of Lighting and Display Science
畢業學年度: 100
語文別: 中文
論文頁數: 67
中文關鍵詞: 光展量二次太陽能集光器集光器
外文關鍵詞: second stage solar concentrator, CAP, etendue
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 太陽能集光系統包含集光器、太陽能電池與追蹤裝置,在高倍率的集光比下,較大的可接收角將會增加追蹤裝置的容忍度,減少追蹤裝置的成本。當可接收角夠大時,幾乎不需要追蹤裝置就能作為非追蹤式太陽能集光器。
    二階段式太陽能集光器分成兩個光學元件,第一光學元件使用菲涅爾(Fresnel)透鏡或是拋物面反射鏡(parabolic mirror)作為主鏡匯聚太陽光,第二光學元件的入瞳位於第一光學元件的焦平面上,這樣結合的二階段式太陽能集光器具有高可接收角的特點,dome、Fresnel Kohler(FK)等都可做為第二光學元件。
    本論文將對二種二階段式太陽能集光器的第二光學元件作深入討論,第一種為Telecentric Compound Parabolic Concentrator(TCPC),利用拋物線的特性將光匯聚到接收器上,其可接收角在幾何集光比100倍時為7.9˚。第二種為Dielectric Totally Internal Reflection(DTIR)集光器,在離軸上利用光線的全反射原理將大角度的入射光線匯聚到接收器上,設計成透鏡陣列的結構,其可接收角在幾何集光比100倍時為3.8˚。


    Solar concentrator system includes solar concentrator, solar cell and a tracker. Under high concentrator ratio, a bigger acceptance angle will give rise to looser requirements on tracker tolerance. The need for a tracker may even be eliminated when the acceptance angle is sufficiently big.
    Two-stage solar concentrator can be divided into Primary Optical Element (POE) and Secondary Optical Element (SOE). POE utilizes a Fresnel lens or a parabolic mirror to focus collected sunlight; whereas SOE, a.k.a. Second Stage Solar Concentrator can be a Dome lens, a Fresnel Kohler lens, etc. The Entrance Pupil of the SOE is placed on the focal plane of POE. This combination provides a high acceptance angle.
    This thesis discusses about designs of second stage concentrator in two different types of two-stage solar concentrator, Telecentric Compound Parabolic Concentrator (TCPC) and Dielectric Totally Internal Reflection (DTIR).
    A TCPC focuses light onto the receiver through its reflective parabolic surface. In our design, the acceptance angle is as high as 7.9 degree when the geometrical concentration ratio is 100x.
    A DTIR concentrator utilizes total internal reflection to focus light onto the receiver. Our design, utilizing lens array, has resulted in a system with acceptance angle 3.8 degree when the geometrical concentration ratio is 100x.

    中文摘要 II ABSTRACT III 誌謝 IV 目錄 V 圖目錄 VIII 表目錄 XI 第一章 緒論 1 1-1 研究背景 1 1-2 研究動機與目的 1 1-3 論文架構 2 第二章 幾何光學原理與輻射學原理 4 2-1 幾何光學 4 2-1-1 司乃爾定律(Snell’s Law) 4 2-1-2 YNU光線追跡 5 2-2 輻射學 7 2-3 光展量(Étendue)與理論最大集光比 11 2-3-1 立體角(Solid Angle)的定義 11 2-3-2 不同介質的輻射輝度 13 2-3-3 光展量(Étendue)的推導與理論最大集光比 15 2-3-4 Concentration-Acceptance Product(CAP) 17 2-4 集光因素 20 第三章 複合拋物面集光器 22 3-1 複合拋物面集光器(Compound Parabolic Concentrator, CPC) 22 3-1-1 CPC的結構和設計原理 22 3-1-2 CPC參數計算 23 3-2 CPC的設計 26 3-3 遠心系統(Telecentric System) 29 3-4 HCPC、SCPC、TCPC的模擬分析 32 3-4-1 系統設計架構 32 3-4-2 模擬分析 33 3-4-3 小結 36 第四章 離軸透鏡陣列集光器 37 4-1 科勒集光器(Köhler Concentrator) 37 4-2 軸上Köhler集光器設計與模擬 39 4-3 界面全反射(Dielectric Totally Internal Reflection, DTIR)集光器 42 4-3-1集光比100倍模擬分析 42 4-3-2集光比400倍模擬分析 46 4-4 照度分析 48 4-5 小結與比較 49 第五章 結論與未來展望 51 參考文獻 52

    [1] 沈輝, 曾祖勤,太陽能光電技術, (五南出版社), (2008)
    [2] WIKIPEDIA, "Concentrated photovoltaics," http://en.wikipedia.org/wiki/Concentrated_photovoltaics
    [3] 江志宏,「聚光型太陽能電池」,慶聲科技股份有限公司,<http://www.kson.com.tw/chinese/study_23-6.htm >,2012年5月10日查詢。
    [4] W.T.Welford and R. Winston, “High Collection Nonimaging Optis”, (Academic press), (1998)
    [5] Goswami, D. Y., F. Kreith, et al., Principles of Solar Engineering (Taylor and francis), (2000).
    [6] Warren J.Smith, Modern Optical Engineering, 4rd, SPIE Press, (2008)
    [7] John Macdonald, GEOMETRICAL OPTICS AND OPTICS DESIGN, New York, OXFRD UNIVERSITY Press, (1997)
    [8] 林正耀,「新型零後焦長太陽能集光器的設計」,國立中央大學,碩士論文,民國99年。
    [9] Wolfe, W. L., Introduction to Radiometry, SPIE Press,(1998)
    [10] James M. Palmer and Barbara G. Grant, The Art of Radiometry, Bellingham, Washington USA, SPIE Press,(1971)
    [11] 李信宏,「膠囊內視鏡之成像鏡頭設計」,國立中央大學,碩士論文,民國93年。
    [12] V. N. Mahajan, Optical Imaging and Aberrations, Part I Ray Geometrical Optics, SPIE PRESS, Washington, (1998).
    [13] Edward H. Stupp, Matthew S. Brennesholtz, “Projection Display”, John Wiley & Sons Ltd, England, (1999)
    [14] 藍鈺邴,「高功率白光發光二極體之汽車頭燈設計」,國立中央大學,碩士論文,民國95年。
    [15] P.Zamora, A.Cvetković, M.Buljan, M.Hernandez, P. Benítez, J.C. Miñano, “Advanced optics for CPV”, 34th IEEE PV Specialist Conference, pp. 2-3, Philadelphia, June 7-12, 2009
    [16] C.E.Valdivia, et al., “HIGH-POWER-DENSITY CONCENTRATED SOLAR CELL SYSTEMS FOR ELECTRICITY GENERATION ON BUILDINGS”, (2008)
    [17] W.B.Stine, R.W.Harrigan, “Solar Energy Systems Design”, (1986)
    [18] R. Winston, J.C. Minano and P. Benitez, Nonimaging Optics, Elsevier Academic Press, pp. 1-217, (2005).
    [19] P.Benitez, et al.,“HIGH-CONCENTRATION MIRROR-BASED KOHLER INTEGRATING SYSTEM FOR TANDEM SOLAR CELLS”, (2006).
    [20] M. Hernandez, A. Cvetkovic, P. Benitez, J. C. Minano, “High-Performance Kohler Concentrators with Uniform Irradiance on Solar Cell,” Proc. of SPIE, (2008)
    [21] Weiya Zhang, Roland Winston, “Simple Köhler Homogenizers for Image -forming Solar Concentrators”, SPIE, (2010) [22]http://www.concentrix-solar.de/fileadmin/user_upload/Download/Technical_Data_Sheets_Q3-2009.pdf
    [23] G. Peharz, J. Jaus, P. Nitz, T. Schmidt, T. Schult, and A. W. Bett, “Development of refractive secondary optics for flatcon modules”, 23rd European Photovoltaic Solar Energy Conference, 1DV.3.34, (2008).
    [24] Pablo Benítez, Juan C. Miñano, et al., “High performance Fresnel-based photovoltaic concentrator”, (2010)

    QR CODE
    :::