跳到主要內容

簡易檢索 / 詳目顯示

研究生: 羅御云
Yu-yun Lo
論文名稱: 雙離子型磺基甜菜鹼基材之潤濕現象
Wetting Behavior on Zwitterionic Sulfobetaine Surfaces
指導教授: 曹恆光
Heng-kwong Tsao
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 93
中文關鍵詞: 雙離子完全潤濕自發性擴張奈米顆粒抗霧
外文關鍵詞: zwitterionic, total wetting, spontaneous spreading, nanoparticles, anti-fog
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗將(N,N-Dimethylaminopropyl)trimethoxysilane和1,3-Propane sultone反應製備出雙離子型磺基甜菜鹼矽烷(Sulfobetaine silane,SBSi),經水解縮合後將SBSi修飾在玻璃基材上並利用面積和液滴接觸線(contact line)之變化探討液滴於SBSi基材上的潤濕現象。使用之液滴分為兩類,純物質(水和十六烷)與添加非揮發性溶質之溶液(纖維二糖(cellobiose)、聚乙烯醇(poly(vinyl alcohol))、聚乙二醇(poly(ethylene glycol))和奈米氧化石墨粒子(graphite oxide nanoparticle)。水的面積於SBSi基材上不斷擴大,隨後因揮發而變小;十六烷因為是非揮發性溶液,其面積即便超過一小時仍可不斷變大。由純物質之結果顯示,此SBSi表面不僅是超親水表面,在此基材上,純溶液為完全潤濕並展現出自發性擴張的潤濕行為。而將基材放入添加非揮發性溶質的溶液中,氣泡在基材上產生滑動行為,因此添加非揮發性溶質液滴的潤濕行為仍為完全潤濕。然而,在空氣中因為非揮發性溶質的析出,會使液滴釘(pin)於基材上並產生接觸角。利用共軛焦顯微鏡法和球帽公式法分析1 wt%纖維二糖溶液之接觸角,結果為2.1o和2.7o。纖維二糖溶液之濃度由0.01增加至1wt%時,因蒸發速率下降使面積逐漸變大。然而,當濃度再升高後由於溶質析出較快,面積則逐漸變小;聚乙烯醇溶液的濃度由0.01至1wt%,則因濃度增加使溶質析出較快,導致面積下降。當濃度再持續增高,則由於黏度影響顯著而致使面積逐漸下降;與纖維二糖之結果相似,氧化石墨溶液之面積亦隨濃度上升而增加,但其抑制蒸發之效果並不像纖維二糖溶液低濃度時顯著。特別的是,聚乙二醇溶液於基材上不產生pinning,改變液滴形狀,液滴會自行縮回球帽狀,以減少(氣液和液固)接觸面積,於濃度0.01 wt%時,可明顯看出液體先擴張開來,之後縮回球帽形。當液滴形成球帽形,受蒸發不均影響在基材上呈現無特定方向且無遲滯的移動行為,最後才由於濃度過高,溶質析出而停止,此行為模式於各濃度(0.01至10wt%)皆可展現。


    In this study, (N,N-Dimethylaminopropyl)trimethoxysilane and 1,3-Propane sultone reacted to form Sulfobetaine silane(SBSi). SBSi is modified on glasses in the process of hydrolysis and condensation. By area and contact line variety to realize wetting behavior on SBSi substrates. Solution is divided into two sections, pure solution (water and hexadecane) and solution adding nonvolatile solute(cellobiose, poly(vinyl alcohol), poly(ethylene glycol), graphite oxide nanoparticle). Water spreads on SBSi substrates, area of water increasing. Then due to evaporation, area of water decreases. Hexadecane is nonvolatile solution. Hexadecane keeps spreading even passing an hour, area of hexadecane increasing. It indicates that SBSi substrates are superhydrophilic surfaces. Dipping solution on it, solution shows spontaneous spreading. Water and hexadecane are total wetting on SBSi substrates. When a SBSi substrate is placed in solution that with nonvolatile solute, bubble moves on substrates. As a result, it’s still total wetting. Nonvolatile solute deposition induces pinning behavior. In cellobiose, poly(vinyl alcohol) and graphite oxide nanoparticle solution experiments all indicate above results. Notably, poly(ethylene glycol)(PEG) solution is a special case. PEG solution doesn’t occur pinning behavior. Therefore, due to unequal evaporation rate, it can move non-directionally on level SBSi substrates. If let PEG solution deform, it can return to hemispherical shape no depending on another force. It shows that PEG solution is no hysteresis on SBSi substrates.

    摘要...............................................I Abstract.........................................III 致謝..............................................IV 目錄...............................................V 圖目錄..........................................VIII 表目錄...........................................XII 第一章 緒論........................................1 1-1 前言.......................................1 1-2 雙離子型結構...............................2 第二章 基本原理及文獻回顧..........................4 2-1 潤濕現象(Wetting Phenomena)................4 2-1-1 楊氏方程式(Young’s equation)..............4 2-1-2 溫佐方程式(Wenzel’s equation).............7 2-1-3 卡西方程式(Cassie's equation)..............8 2-2 接觸角遲滯(Contact angle hysteresis).......9 2-2-1 接觸角遲滯的定義...........................9 2-2-2 接觸角遲滯的成因............................10 2-3 接觸角量測方法............................12 2-3-1 微量針頭法(Needle-syringe method).........12 2-3-2 蒸發法(Evaporation method)................13 2-3-3 威廉米平板法(Wilhelmy plate method).......14 2-3-4 傾斜法(Inclined plate method).............15 2-4 咖啡漬圈環效應(coffee ring effect)........16 2-5 拉午耳定律(Raoult’s Law).................18 2-6 文獻回顧..................................19 2-6-1 乙二醇甲基丙烯酸酯水膠....................19 2-6-2 二氧化鈦(TiO2)............................20 2-6-3 雙離子型材料(Zwitterionic materials)......21 2-7 研究目的..................................24 第三章 實驗.......................................25 3-1 實驗藥品..................................25 3-2 實驗儀器和軟體............................26 3-3 實驗步驟及方法............................27 3-3-1 製備磺基甜菜鹼矽烷(SBSi)..................27 3-3-2 製備超親水雙離子型基材....................28 3-3-3 電解剝落法製備奈米氧化石墨粒子............28 3-4 儀器原理及分析方法........................29 3-4-1 巨觀放大顯微測量系統......................29 3-4-2 光學顯微鏡................................30 3-4-3 雷射掃描共軛焦顯微鏡......................32 3-4-4 影像式接觸角量測儀........................33 3-4-5 密度與聲速測定儀..........................34 3-4-6 落球式黏度計..............................36 3-4-7 紫外-可見光分光光譜儀.....................36 3-5 低接觸角分析方法..........................37 3-5-1 球帽(Spherical Cap)公式...................37 3-5-2 共軛焦顯微鏡分析法........................38 第四章 結果與討論.................................40 4-1 純物質之潤濕現象..........................40 4-1-1 水........................................40 4-1-2 十六烷(Hexadecane)........................47 4-2 添加非揮發性溶質之溶液的潤濕現象..........51 4-2-1 纖維二糖(Cellobiose)......................51 4-2-2 聚乙烯醇(Poly(vinyl alcohol)).............59 4-2-3 奈米氧化石墨粒子(graphite oxide nanoparticle)...62 4-2-4 聚乙二醇(Poly(ethylene glycol))...........65 第五章 結論.......................................72 第六章 參考文獻...................................74

    [1] M.-C. Sin., S.-H., Chen, Y. Chang., Hemocompatibility of zwitterionic interfaces and membranes, Polymer Journal, 46, 436 (2014).
    [2] N.K.ADAM, Use of the Term 'Young's Equation' for Contact Angles, Nature, 180, 809 (1957).
    [3] R. N. Wenzel, Resistance of solid surfaces to wetting by water, Ind. Eng. Chem., 28, 988 (1936).
    [4] A. Cassie, S. Baxter, Wettability of porous surfaces, Trans. Faraday Soc., 40, , 546 (1944)
    [5] J. Joanny , P. De Gennes, A model for contact angle hysteresis, J. Chem. Phys. 81, 552 (1984).
    [6] S.Yamada, J. Israelachvili, Friction and Adhesion Hysteresis of Fluorocarbon Surfactant Monolayer-Coated Surfaces Measured with the Surface Forces Apparatus, J. Phys. Chem. B, 102, 234 (1998).
    [7] R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, T. A. Witten, Capillary flows the cause of ring stains from dried liquid drops , Nature, 389, 827 (1997).
    [8] R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, T. A. Witten, Contact line deposits in an evaporating drop, Physical Review E, 62, 756 (2000)
    [9] X. Shen, C.-M. Ho, T.-S. Wong, Minimal Size of Coffee Ring Structure, J. Phys. Chem. B, 114, 5269 (2010)
    [10] J. Kopeček, Hydrogels:From Soft Contact Lenses and Implants to Self-Assembled Nanomaterials, J. Polym. Sci. A:Polym. Chem. 47, 5929 (2009)
    [11] O. Wichterle, D. Lím, Hydrophilic Gels for Biological Use, Nature, 185, 117 (1960).
    [12] Z. Voldřich, Z. Tománek, J. Vacík, J. Kopeček, Long-term experience with poly(glycol monomethacrylate) gel in plastic operations of the nose, J. J Biomed Mater Res, 9, 675 (1975)
    [13] H. Bai, C. Li, X. Wang and G. Shi, A pH-sensitive graphene oxide composite hydrogel, Chem. Commun., 46, 2376 (2010)
    [14] A. Fujishima, K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature, 238, 37 (1972)
    [15] K. Hashimoto, H. Irie, A. Fujishima, TiO2 Photocatalysis: A Historical Overview and Future Prospects, Jpn. J. Appl. Phys., 44, 8269 (2005)
    [16] M. Machida, K. Norimoto, T. Watanabe, K. Hashimoto, A. Fujishima, The effect of SiO2 addition in super-hydrophilic property of TiO2 photocatalyst, J. Mater. Sci., 34, 2569 (1999)
    [17] K. Guan, Relationship between photocatalytic activity, hydrophilicity and self-cleaning effect of TiO2/SiO2 films, Surf. Coat. Tech., 191, 155 (2005)
    [18] F. Meng and Z. Sun, A mechanism for enhanced hydrophilicity of silver nanoparticles modified TiO2 thin films deposited by RF magnetron sputtering, Appl. Surf. Sci., 255, 6715 (2009)
    [19] Y. Chang , Y.-J. Shih , C.-J. Lai , H.-H. Kung and S. Jiang, Blood-Inert Surfaces via Ion-Pair Anchoring of Zwitterionic Copolymer Brushes in Human Whole Blood, Adv. Funct. Mater., 23, 1100 (2013)
    [20] S. Chen, L. Li, C. Zhao and J. Zheng, Surface hydration: Principles and applications toward low-fouling/nonfouling biomaterials, Polymer, 51, 5283 (2010)
    [21] Z. Zhang, S. Chen and S. Jiang, Dual-Functional Biomimetic Materials: Nonfouling Poly(carboxybetaine) with Active Functional Groups for Protein Immobilization, Biomacromolecules, 7, 3311 (2006)
    [22] C.-J. Huang, Y. Li and S. Jiang, Zwitterionic Polymer-Based Platform with Two-Layer Architecture for Ultra Low Fouling and High Protein Loading, Anal. Chem., 84, 3440 (2012)
    [23] S. Jiang, Z. Zhang, S. Chen, H. Vaisocherova, Dual-functional nonfouling surfaces and materials, U.S. Patent US20100099160 A1
    [24] P.-S. Liu, Q. Chen, S.-S. Wu, J. Shen, S.-C. Lin, Surface modification of cellulose membranes with zwitterionic polymers for resistance to protein adsorption and platelet adhesion, J. MEMBRANE SCI., 350, 387 (2010)
    [25] Y.-C. Chiang, Y. Chang, A. Higuchi, W.-Y. Chen, R.-C. Ruaan, Sulfobetaine-grafted poly(vinylidene fluoride) ultrafiltration membranes exhibit excellent antifouling property, J. MEMBRANE SCI., 339, 151 (2009)
    [26] Y.-F. Yang, Y. Li, Q.-L. Li, L.-S. Wan, Z.-K. Xu, Surface hydrophilization of microporous polypropylene membrane by grafting, J. MEMBRANE SCI., 362, 255 (2010)
    [27] zwitterionic polymer for anti-biofouling W. K. Cho, B. Kong, and I. S. Choi, Highly Efficient Non-Biofouling Coating of Zwitterionic Polymers:Poly((3-(methacryloylamino)propyl)-dimethyl(3-sulfopropyl)ammonium hydroxide), Langmuir, 23, 5678 (2007)
    [28] C. R. Emmenegger, E. Brynda, T. Riedel, Z. Sedlakova, M. Houska, and A. B. Alles, Interaction of Blood Plasma with Antifouling Surfaces, Langmuir, 25, 6328 (2009)

    QR CODE
    :::