| 研究生: |
羅翊戩 Yi-Chien Lo |
|---|---|
| 論文名稱: |
高功率LED 照明之二次光學設計效率的研究 The study of optical efficiency for secondary optical design for high-power LED lighting |
| 指導教授: |
孫慶成
Ching-Cherng Sun |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 光學有效利用率 、發光二極體 、二次光學設計 、光學效率 |
| 外文關鍵詞: | LED, Optical design, Optical efficiency, Optical utilization factor |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要探討發光二極體應用照明燈具上之光學效率及光學有效利用率之分析,並且於不同設計中考慮其他要求的光學品質之變化。首先,在探討準直光系統中,我們發現晶片尺寸以及二階光學機構大小對於光學效率及光學有效利用率有極大的影響。而具截止線之燈具中,發散角越小的區域攔截到的能量越多,法規面上強點與光學有效利用率將被提升。而散光形設計,雙反射式具微結構之設計不但可以得到柔和之光形且眩光值較低;而全反射式透鏡將有利於路燈這類需要大面積之照明,其可滿足北美法規之之均勻度要求。
In this dissertation, we discuss the optical efficiency and optical utilization factor about the lighting application which based on high power LEDs. Afterwards, we also discuss the variation about other optical requirements in each different case. First, we find out the optical efficiency and optical utilization factor depend on the chip size and the structure size of the optical module in the collimator system. Then, we discuss the optical module with high contrast. The intercepted energy in the area with small extended angle become relatively higher, the optical utilization factor and the illuminance of the hot spot in the regulation plane become higher as well. In the wide-angle design, the double-reflector module with multi-segment not only gives a smoothing pattern, but also prevents the glare effect. At last, we introduce a wide-angle lens. It can meet the uniformity of the regulation by IESNA.
1. Wikipedia website,http://en.wikipedia.org/wiki/Heinrich_G%C3%B6bel.
2. M. Josephson, Edison: a biography (McGraw-Hill, New York, 1959).
3. Wikipedia website, http://en.wikipedia.org/wiki/Thomas_Edison.
4. J. Kaufman, IES Lighting Handbook 1981 Reference Volume (Illuminating Engineering Society of North America, New York, 1981).
5. R. Kane and H. Sell, Revolution in lamps: a chronicle of 50 years of progress, 2nd ed. (The Fairmont Press, 2001).
6. Wikipedia website, http://en.wikipedia.org/wiki/High-intensity_discharge_lamp.
7. H. J. Round, “A note on carborundum,” Electrical World 19, 309-310 (1907).
8. N. Holonyak, Jr. and S. F. Bevaqua, “Coherent(visible) Light Emission From Ga(As1–xPx) Junctions,” Appl. Phys. Lett. 1, 82-83 (1962).
9. Shuji Nakamura, Masayuki Senoh, and Takashi Mukai, “P-GaN/N-InGaN/N-GaN Double-Heterostructure Blue-Light-Emitting Diodes,” Jpn. J. Appl. Phys. 32, pp. L8-L11 (1993).
10. Shuji Nakamura, Naruhito Iwasa, Masayuki Senoh, and Takashi Mukai, “Hole Compensation Mechanism of P-Type GaN Films,” Jpn. J. Appl. Phys. 31, pp. 1258-1266 (1992).
11. S. Chichibu, T. Azuhata, T. Sota, H. Amano, and I. Akasaki, “Optical properties of tensile-strained wurtzite GaN epitaxial layers,” Appl. Phys. Lett. 70, 2085 (1997).
12. Shuji Nakamura, Masayuki Senoh, Shin‐ichi Nagahama, Naruhito Iwasa, Takao Yamada, Toshio Matsushita, Yasunobu Sugimoto, and Hiroyuki Kiyoku, “Continuous‐wave operation of InGaN multi‐quantum‐well‐structure laser diodes at 233 K,” Appl. Phys. Lett. 69, 3034 (1996).
13. E. F. Schubert, Light-Emitting Diodes, (Cambridge University Press, 2006).
14. S. Nakamura and G. Fasol, The Blue Laser Diode: GaN Based Light Emitters and Lasers (Spinger, Berlin, 1997).
15. S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64, 1687-1689 (1994).
16. S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, “High-brightness InGaN blue, green, and yellow light-emitting diodes with quantum well structures,” Jpn. J. Appl. Phys. 34, L797-L799 (1995).
17. Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi, “Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material,” United States Patent, US 5998925 (1999).
18. LED Magazine, http://www.ledsmagazine.com/news/7/2/7.
19. CREE, http://www.cree.com/press/press_detail.asp?i=1304945651119.
20. 孫慶成,2009固態照明研討會,國立中央大學,中華民國九十八年。
21. M. G. Craford, “LEDs for Solid State Lighting and Other Emerging Applications: Status, Trends, and Challenges,” Proc. SPIE 5941, 1-10 (2005).
22. Autonet, http://test.autonet.com.tw/cgi-bin/file_view.cgi?b0010684L5001.
23. Audi 汽車資訊, http://audilee.blogspot.com/2007/08/audiled.html.
24. American National Standards Institute and IES, American National Standard Practice for Roadway Lighting ANSI/IES RP-8-1983 (Illuminating Engineering Society of North America, New York, 1983).
25. J. Block, The IESNA Lighting Handbook Ninth Edition (Illuminating Engineering Society of North America, New York, 1999).
26. ECE, http://www.unece.org/trans/main/wp29/wp29regs101-120.html.
27. StVZO,22A No.23: http://www.enhydralutris.de/Fahrrad/Beleuchtung/node403.html.
28. Commission Internationale de l’Éclairage, “CIE 1988 2° spectral luminous efficiency functions of photopic vision,” CIE Publication No. 86 (1988).
29. R. W. G. Hunt, Measuring Colour, (Fountain Press, 1998).
30. G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, (John Wiley, 2000).
31. 大田登,色彩工程學 理論與應用,第二版,全華圖書出版社,中華民國九十六年。
32. V. N. Mahajan, Optical Imaging and Aberrations: Part I Ray Geometrical Optics (SPIE PRESS, Washington, 1998).
33. R. W. Boyd, Radiometry and the Detection of Optical Radiation, (John Wiley, 1983).
34. A. Zukauskas, M. S. Shur, and R. Caska, Introduction to Solid-State Lighting, (John Wiley, 2002).
35. C. C. Sun, T. X. Lee, S. H. Ma, Y. L. Lee, and S. M Huang, “Precise optical modeling for LED lighting verified by cross correlation in the midfield region,” Opt. Lett. 31, 2193-2195 (2006).
36. W. G. Chen, C. M. Uang, and C. H. Jou, “Optimal design of an irregular Fresnel lens for multiple light sources using a three-layered Hierarchical Genetic Algorithm,” Opt. Express 15, 9918-9935 (2007).
37. I. Moreno, J. Munoz, and R. Ivanov, “Uniform illumination of distant targets using a spherical light-emitting diode array, ” Opt. Eng. 46, 033001 (2007).
38. M. Burmen, F. Pernus, and B. Likar, “LED light sources: a survey of quality-affecting factors and methods for their assessment,” Meas. Sci. Technol. 19, 122002 (2008).
39. C. C. Sun, C. Y. Chen, H. Y. He, C. C. Chen, W. T. Chien, T. X. Lee, and T. H.Yang, “Precise optical modeling for silicate-based white LEDs,” Opt. Express 16, 20060–20066 (2008).
40. B. Kim, M. Choi, H. Kim, J. Lim, and S. Kang, “Elimination of flux loss by optimizing the groove angle in modified Fresnel lens to increase illuminance uniformity, color uniformity and flux efficiency in LED illumination,” Opt. Express 17, 17916-17927 (2009).
41. F. Chen, S. Liu, K. Wang, Z. Y. Liu, and X. B. Luo, “Free-form lenses for high illumination quality light-emitting diode MR16 lamps,” Opt. Eng. 48, 123002 (2009).
42. C. C. Sun*, W. T. Chien, I. Moreno, C. C. Hsieh, and Y. C. Lo, “Analysis of the far-field region of LEDs,” Opt. Express 17, 13918-13927 (2009).
43. I. Moreno and C. C. Sun, “Modeling the radiation pattern of LEDs,” Opt. Express 16, 1808-1819 (2008).
44. D. Feng, J. Yoo, K. Nagatani, W. Kim, and H. C. Kim, “High Illumination Efficiency Linear Light Source Using Light Emitting Diodes,” Jpn. J. Appl. Phys. 46, 563-565 (2007)
45. C. H. Tsuei, J. W. Pen, and W. S. Sun, “Simulating the illuminance and the efficiency of the LED and fluorescent lights used in indoor lighting design,” Opt. Express 16, 18692-18701 (2008).
46. F. Muñoz, P. Benı tez, O. Dross, J. C. Miñano, and B. Parkyn, “Simultaneous multiple surface design of compact air-gap collimators for light-emitting diodes,” Opt. Eng. 43, 1522-1530 (2004).
47. P. C. P. Chao, C. Y. Shen, C. W. Chiu, J. S. Huang, Y. Y. Kao, T. Y. Tu, C. L. Wang, S. Chi, H. W. Lin, and S. Y. Tsai, “A novel lens cap designed for the RGB LEDs installed in an ultra-thin and directly lit backlight unit of large-sized LCD TVs,” J. Soc. Inf. Disp. 16, 317-327 (2008).
48. K. Wang, X. B. Luo, Z. Y. Liu, B. Zhou, Z. Y. Gan, and S. Liu, “Optical analysis of an 80-W light-emitting diode street lamp,” Opt. Eng. 47, 013002 (2008).
49. H. Yang, J. W. M. Bergmans, T. C. W. Schenk, J. P. M. G. Linnartz, and R. Rietman, “Uniform Illumination Rendering Using an Array of LEDs: A Signal Processing Perspective,” IEEE Trans. Signal Process. 57, 1044-1057 (2009).
50. I. Moreno, M. Avendaño-Alejo, and R. I. Tzonchev, “Designing light-emitting diode arrays for uniform nearfield irradiance,” Appl. Opt. 45, 2265-2272 (2006).
51. I. Moreno, C. C. Sun, and R. Ivanov, “Far-field condition for light-emitting diode arrays,” Appl. Opt. 48, 1190-1197 (2009).
52. M. B. Chang, "Total internal reflection lens," Appl. Opt. 24, 1256-1259 (1985).
53. T. M. Aslam, David Haider and I. J. Murray, “Principles of disability glare measurement: an ophthalmological perspective,” Acta Ophthalmologica Scandinavica 85, 354-360 (2007).
54. Y. Yatsuda, and et al., “LED lamp for light source of a headlamp,” United States Patent, US 7019334, (2006).
55. H. Ishida, and M. Tatsukawa, “Light source unit for vehicular lamp,” United States Patent, US7097334, (2006).
56. Y. Suzuki, and Y. Okubo, “Vehicle lamp unit and vehicle headlamp using the same,” United States Patent, US 0215415, (2006).
57. M. Naganawa, and M. Tsukamoto, “Vehicle headlamp”, United States Patent, US 0183164, (2007).
58. D.R. Jenkins, and et al., “Low beam head lamp design using distributive lighting system,” SAE Tech. 960489, (1996).
59. M. Dassanayake, and et al., “Remote hid headlamp systems,” SAE SP-1424, 0100386, (1999).
60. 胡志明,特殊封裝之白光LED應用於汽車近光燈之研究,國立中央大學碩士論文,中華民國九十七年。
61. 孫瑞宏,高功率LED應用於車前燈之設計,國立中央大學碩士論文,中華民國九十四年。
62. 馮世典,德規LED自行車前燈光學設計與驗證,國立中央大學碩士論文,中華民國一百年。
63. Y. C. Lo, C. C. Chen, H. Y. Chou, K. Y. Yang, and C. C. Sun, “ A design of a bike headlamp based on a power white-LED,” Optical Engineering 50, 080503 (2011).
64. 楊凱宇,高功率LED之歐洲法規自行車前燈設計,國立中央大學碩士論文,中華民國九十八年。
65. Y. C. Lo, J. Y. Cai, C. W. Chen, and C. C. Sun, “A compact LED-based bike head lamp designed for meeting K-mark regulation, ” Optics and Laser Technology (2011).
66. R. Winston, J. C. Miñano, and P. Benítez, NonimagingOptics, (Elsevier, 2005).
67. H. Ries, and J. A. Muschaweck, “Tailored freeform optical surfaces,” J. Opt. Soc. Am. A 19, 590–595 (2002).
68. W. B. Elmer, “A Study in Street Lighting Reflector Design,” Appl. Opt. 5, 343-343 (1966).
69. Y. Luo, Z. Feng, Y. Han, and H. Li, “Design of compact and smooth free-form optical system with uniform illuminance for LED source,” Opt. Express 18, 9055-9063 (2010).
70. Y. Ding, X. Liu, Z. R. Zheng, and P. F. Gu, “Freeform LED lens for uniform illumination,” Opt. Express 16, 12958-12966 (2008).
71. J. Bortz, N. Shatz, and D. Pitou, “Optimal design of a nonimaging projection lens for use with an LED source and a rectangular target,” Proc. SPIE 4092, 130-138 (2000).
72. Y. C. Lo, K. T. Huang, X. H. Lee, and C. C. Sun, “Optical design of a Butterfly lens for a street light based on a double-cluster LED,” Microelectronics Reliability (2011).
73. 謝志欽,LED準遠場之研究與防眩光學之設計,國立中央大學碩士論文,中華民國九十七年。
74. 蔡旭極,高功率多晶LED低眩光投射燈之設計,國立中央大學碩士論文,中華民國一百年。
75. 江重致,人眼眼球模型與視覺表現之模擬分析研究,國立中央大學碩士論文,中華民國九十八年。
76. J. Johannes, “On the cause of disability glare and its dependence on glare angle, age and ocular pigmentation,” Clin Exp Optom 86, 363–370 (2003).