| 研究生: |
楊青峰 chien-fong Yang |
|---|---|
| 論文名稱: |
多載量無人搬運車(AGV)運送派車法則的探討 research of muti-load AGV transport rules |
| 指導教授: |
何應欽
Ying-Chin Ho |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業管理研究所 Graduate Institute of Industrial Management |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 多載量無人搬運車 |
| 外文關鍵詞: | AGV |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在自動化生產系統之中,能夠有效率地將必須的物料搬運至確切的地點,對系統所表現出來的績效有相當深刻的影響 吾人將在此研究多載量無人搬運車(AGV)在自動化生產系統的影響.傳統上,研究AGV系統的文獻大多是考慮單載量AGV系統(Unit-Load AGVs),當工廠需要較高的產出率時,為了滿足系統內大量工件的運送需求,有三個方法可以做為決策的參考:第一是增加AGV的速度,可是增加AGV速度,就安全理由而言,並不是一個可行的方式;第二為增加AGV的數量,雖然增加AGV數量是可增其負載的數量,但在傳統網路式佈置上,會使交通壅塞和碰撞問題更惡化;最後是增加AGV的負載量,即是使用多載量AGV系統(Multi-Load AGVs),增加負載量可改善車輛的使用率,以滿足運送需求並提高產出率。
因此吾人將以多載量無人搬運車作為自動化生產系統中的搬運工具,並且針對不同的載取派車法則(Dispatching Rule)及運送派車法則之組合下的設計,期望求得一個最佳化的法則組合,使多載量無人搬運車系統能發揮最良好的績效。
以下對載取派車法則與負載派車法則作簡單的說明:
1載取派車法則:
一台多載量AGV若決定其下一個主要作業為載取作業後,它立即會遇到的問題是該前往那個工作站載取工件,因此載取派車法則即為AGV用來判斷該往何處撿取工件的法則。
2.運送派車法則:
運送派車法則則是在無人搬運車在有承載工件的狀況下,決定出目前無人搬運車上所負載的工件中,哪一個工件必須優先送至下一個工作站。
In manufacturing system , it is very important to have a efficient material handling system , Tompkin and White(1984)ever point out that the cost of material handling is 20% to 50% of while manufacture operation.
For this reason , we hope to design a good material handling system which can help to reduce the cost of manufacturing cost , we use AGV
(Automated Guided Vehicle) to be transporting tools in our environment and control AGV with different rule included three dispatching or transporting choosing rules ,five dispatching rules ,eleven transporting rules.
Finally ,we use simulation tool to show the results of combination of different kind of rules ,and hope to find the best combination.
Bielge, U et. al. 1977 "AGV systems with multi-load carriers: basic issues and potential benefits", Journal of Manufacturing Systems, 16(3) 159-174
Bozer, Y. A. and Srinivasan, M. M., 1989, “Tandem configurations for AGV systems offer simplicity and flexibility,” Material Handling System, 21(2), 23-27.
Bozer, Y. A. and Srinvasan, M. M., 1992, “Tandem AGV system : a partitioning algorithm and performance comparison with conventional AGV systems,” European Journal of Operational Research, 63(1) , 173-191.
Bozer, Y. A., and Yen, C. K., 1996, “Intellignet dispatching rules for trip-based material handling systems”, Journal of Manufacturing Systems, 15(4), 226-239.
Egbelu, P. J., 1987a, “The use of non-simulation approaches in estimating vehicle requirements in an automated guided vehicle base transport System,” Material Flow, 2, 17-32.
Egbelu, P. J. and Tanchoco, J. M. A., 1986, “Potentials for bi-directional guide-path for automated guided systems,” International Journal of Production Research, 24(5), 1075-1097.
Gaskins, R. J., and Tanchoco, J. M. A., 1987, “Flow path design for automated guided vehicle systems,”International Journal of Production Research, 25(5), 667-676.
Gaskins, R. J., Tanchoco, J. M. A., and Taghoboni, F., 1989, “Virtual flow paths for free-ranging automated guided vehicle system,” International Journal of Production Research, 27(1), 91-100.
Ho, Y. C., and Shaw, H. C., 1998, “The performance of multiple-load AGV systems under different guide path configurations and vehicle control strategies,” the Joint Conference of the Fifth International Conference on Automation Technology and 1998 International Conference of Production Research(Asia Meeting) , July 20-22, Grand Hotel, Taipei, Taiwan, R.O.C., 1998.
Kim, C. W. and Tanchoco, J. M. A., 1991, “Conflict-free shortest path bi-directional AGV routing,” International Journal of Production Research, 29(12), 2377-2391.
Klein, C. M. and Kim, J., 1996, “AGV dispatching”, International Journal of Production Research, 34(1), 95-110.
Lee, J., Tangjarukij, M., and Zhu, Z., 1996,”Load selection of automated guided vehicles in flexible manufacturing systems”, International Journal of Production Research, 34(12), 3388-3400
Maxwell, W. L. and Muckstadt, J. A., 1982, “Design of automatic guided vehicle systems,” IIE Transaction, 14(2), 114-124.
Nayyar., P. and Khator, S. K., 1993, “Operational Control of multi-load vehicles in an automated guided vehicle system”. Computers and Industrial Engineering, 25(1-4), 503-506.
Newton, D., 1985, “Simulation model calculates how many automated guided vehicle are needed,”Industrial Engineering, 8(2), 68-77.
Occena, L. G. and Yokota, T., 1991, “Modeling of an automated guided vehicle system (AGVs) in a just-in-time (JIT) environment,” International Journal of Production Research, 29(3), 495-511.
Rajotia, S., Shanker, K., and Batra, J. L., 1998, “Determination of optimal AGV fleet size for an FMS,” International Journal of Production Research, 36(5), 1177-1198.
Sinriech, D. and Tanchoco, J. M. A., 1995, “An introduction to the segmented flow approach for discrete material flow systems,” International Journal of Production Research, 33(12), 3381-3410.
Sinriech, D. Tanchoco, J. M. A., and Herer, Y. T., 1996, “The segmented bi-directional single-loop topology for material flow systems,” IIE Transactions, 28(1), 40-54.
Tanchoco, J. M. A. and Sinriech, D., 1991, “OSL-optimal single loop guided paths for AGVs,” International Journal of Production Research, 30(3), 665-681.
Tanchoco, J. M. A., and Co, C. G., 1994, “Real-time control strategies for multiple-load AGVs,” Material Flow Systems in Manufacturing, edit by Tanchoco, J. M. A. (Chapman & Hall), pp. 300-331.
Yim. D., and Linn. R. J., 1993, “Push and pull rules for dispatching automated guided vehicles in a flexible manufacturing system”. International Journal of Production Research, 31(1), 43-57.