| 研究生: |
曾昱中 Yu-chung Tseng |
|---|---|
| 論文名稱: |
奈米尺度鎳金屬點陣與矽碳單晶基材之界面反應研究及規則有序矽單晶奈米結構陣列之製備 Interfacial Reactions of Periodic Ni Nanodot Arrays on Epitaxual Si:C Layers and The Fabrication of Single Crystalline Silicon Nanostructure Arrays. |
| 指導教授: |
鄭紹良
Shao-Liang Cheng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 矽碳基材 、奈米環 、鎳矽化物 、奈米點陣 |
| 外文關鍵詞: | Si:C substrate, Silicide, Nanodot, Nanoring |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究中分別利用自然滴製法與LB-like法在矽碳及矽晶基材上製備出大面積排列規則的PS球陣列結構作為模板(Template)。
在蒸鍍Ni金屬與移除PS球模板後,可製備出大面積規則排列且尺寸均一之鎳金屬奈米點陣列。鎳金屬點退火至350 ℃時,低電阻相NiSi相已完全形成於(001)Si0.976:C0.024基材上。而當鎳金屬點退火至500 ℃時,鎳矽化物奈米點仍主要為低電阻之NiSi相,需提高退火溫度至600 ℃才會完全轉換成高電阻NiSi2相。此結果證實碳的摻雜可增加低電阻NiSi點陣之熱穩定性。而當鎳金屬奈米點陣之退火熱處理溫度升高至900 ℃時,則會發現大量奈米線結構的產生,此奈米線結構主要是由矽、氧成分所組成之非晶質SiOX奈米線,其大小約為14-20 nm,並推測其生長為固-液-固(Solid-Liquid-Solid, SLS)之成長機制。
在製備大面積規則排列矽單晶奈米環結構之研究方面,本研究也首度結合奈米球模板與多重選擇性化學濕式蝕刻技術,成功在矽晶基材上製備出環高與環寬可控制之規則有序矽單晶奈米環狀結構陣列。
The present study has demonstrated that well-ordered arrays of polystyrene(PS) nanosphere were successfully fabricated on (001)Si and (001)Si0.976C0.024 substrates by using the LB-like and/or drop-coating technique. The self-assembled PS nanosphere arrays were used as the deposition templates.
After Ni thin film deposition and subsequent removal of the PS nanosphere templates, periodic Ni nanodot arrays were formed. For the samples annealed at 350℃, low-resistivity NiSi nanodots were observed to form on the (001)Si0.976C0.024 substrate. Furthermore, even after annealing at 500℃, the low-resistivity NiSi phase wewe still detected in the Ni nanodots/Si:C sample. As the annealing temperature was increased to 600℃, the nanodots grown on (001)Si0.976C0.024 substrates were then transformed to high- resistivity NiSi2 phase completely. The observed results revealed that the phase stability of NiSi nanodots was significantly improved by the addition of C to Si substrate. For the Ni nanodot samples further annealed at 900 ℃, many SiOx nanowires of 14-20 nm in diameter were observed to grow from the NiSi2 nanodot regions. The growth process of amorphous SiOx nanowires could be explained by the solid–liquid–solid (SLS) mechanism.
By combining the nanosphere template and selective chemical etching, large-area size and height-tunable Si nanoring-like nanostructure arrays were successfully fabricated on (001)Si substrates.
[1] T. Yasuda, S. Yamasaki, and S. Gwo, “Nanoscale selective-area epitaxl growth of Si using an ultrathin SiO2/Si3Ni4 mask patterned by an atomic force microscope,” Appl. Phys. Lett. 77 (2000) 3917-3919.
[2] J. I. Martin, J. Nogues, K. Liu, J. L. Vicent, and I. K. Schuller, “Ordered magnetic nanostructures: fabrication and properties,” J. Magn. Magn. Mater. 256 (2003) 449-501.
[3] W. Ma, D. Hesse, and U. Gösele, “Formation of ferroelectric perovskite nanostructure patterns using latex sphere monolayers as masks: an ambient gas pressure effect during pulsed laser deposition,” small 1 (2005) 837–841.
[4] N. Li and M. Z. Allmang, “Size-tunable Ge nano-particle arrays patterned on Si substrates with nanosphere lithography and thermal annealing,” J. Appl. Phys. 41 (2002) 4626–4629.
[5] Q. Yan, F. Liu, L. Wang, J. Y. Lee, and X. S. Zhao, “Drilling nanoholes in colloidal spheres by selective etching,” J. Mater. Chem. 16 (2006) 2132–2134.
[6] A. Winkleman, B. D. Gates, L. S. McCarty, and G. M. Whitesides, “Directed self-assembly of spherical particles on patterned electrodes by an applied electric field,” Adv. Mater. 17 (2005) 1507-1511.
[7] K. L. Wang, T. C. Holloway, R. F. Pinizzotto, Z. P. Sobczak, W. R. Hunter, and A. F. Tash, “Composite TiSi2/n+ poly-Si low-resistivity gate electrode and interconnect for VLSI device technology,” IEEE Trans. Electron Device 29 (1982) 547-553.
[8] M. A. Nicolet and S. S. Lau (1983) “Materials Pocess and Characterization Ed,” N. G. Einspruch, G. R. Larrabee (Academic, New York) p.329-464.
[9] L. J. Chen (2004) “Silicide technology for integrated circuits,” London, U. K., MPG Books Limited, Bodmin, Cornwall, p.18-19.
[10] L. J. Chen (2004) “Silicide technology for integrated circuits,” London, U. K., MPG Books Limited, Bodmin, Cornwall, p.19-20.
[11] R. W. Mann, L. A. Clevenger, P. D. Agnello, and F. R. White, “Silicides and local interconnections for high performance VLSI applications,” IBM Journal of Research and Development 39 (1995) 403-417.
[12] 林鴻志,「深次微米閘極技術之發展與未來驅勢(II)」,奈米通訊,第五卷,第三期。
[13] M. H. Wang and L. J. Chen, “Phase formation in the interfacial reactions of ultrahigh vacuum deposited Titanium thin films on (111)Si,” J. Appl. Phys.(USA) 71 (1992) 5918-5925.
[14] R. Beyers and R. Sinclair, “Metastable phase formation in Titanium-Silicon thin films,” J. Appl. Phy. 57 (1985) 5240-5245.
[15] T. Ohguro, S. I. Nakamura, M. Koike, T. Morimoto, A. Nishiyama, Y. Ushiku, T. Yoshitomi, M. Ono, M. Saito, and H. Iwai, “Analysis of resistance behavior in Ti and Ni-salicided polysilicon films,” IEEE Tran. Electron Devices ED-41 (1994) 2305-2317.
[16] J. B. Lasky, J. S. Nakos, O. J. Cain and P. J. Geiss, “Comparison of transformation to low-resistivity phase and agglomeration of TiSi2 and CoSi2,” IEEE Tran. Electron Devices, ED-38 (1991) 262.
[17] K. Fukasaku, A. Ono, T. Hirai, Y. Yasuda, N. Okada, S. Koyama, T. Tamura, Y. Yamada, T. Nakata, M. Yamana, N. Ikezawa, T. Matsuda, K. Arita, H. Nambu, A. Nishizawa, K. Nakabeppu, and N. Nakamura, “UX6-100 nm generation CMOS integration technology with Cu/low-k interconnect,” ULSI Device Dev. Div. (2002) 64-65.
[18] K. Inoue, K. Mikagi, H. Abiko and T. Kikkawa, “A new Cobalt salicide technology for 0.15 μm CMOS using high-temperature sputtering and in-situ vacuum annealing,” IEDM Tech. Dig. 45 (1995) 445-448.
[19] K. Goto, A. Fushida, J. Watanabe, T. Sukegawa, K. Kawamura, T. Yamazaki and T. Sugii, “Leakage mechanism and optimized conditioms of Co salicide process for deep-submicron CMOS devices,” Proc. IEDM 45 (1995) 449-452.
[20] Q. Z. Hong, W. T. Shiau, H. Yang, J. A. Kittl, C. P. Chao, H. L. Tsai, S. Krishnan, I. C. Chen, and R. H. Havemann, “CoSi2 with low diode leakage and low sheet resistance at 0.065 μm gate length,” Proc. IEDM 97 (1997) 107-110.
[21] L.J. Chen, (2004) “Silicide technology for integrated circuits,” London, U. K., MPG Books Limited, Bodmin, Cornwall, p.88.
[22] C. Detavernier, R. L. Van Meirhaeghe, F. Cardon, and K. Maex, “CoSi2 formation through SiO2,” Thin Solid Films 386 (2001) 19-26.
[23] K. Maex, “Silicides for integrated circuits: TiSi2 and CoSi2,” Mater. Sc. Eng. R 11 (1993) 53-153.
[24] L. J. Chen (2004) “Silicide technology for integrated circuits,” London, U. K., MPG Books Limited, Bodmin, Cornwall, p.96-97.
[25] A. Lauwers, P. Besser, T. Gutt, A. Satta, M. De Potter, R. Lindsay, N. Roelandts, F. Loosen, S. Jin, H. Bender, M. Stucchi, C. Vrancken, B. Deweerdt, and K. Maex, “Comparative study of Ni-Silicide and Co-Silicide for sub 0.25-μm technologies,” Microelectronic Engineering. 50 (2000) 103-116.
[26] L. J. Chen (2004) “Silicide technology for integrated circuits,” London, U. K., MPG Books Limited, Bodmin, Cornwall, p.98-99.
[27] T. Ernst, F. Ducroquet, J. M. Hartmann, O. Weber, V. Loup, R. Truche, A. M. Papon, P. Holliger, B. Previtali, A. Toffoli, J. L. Di Maria, and S. Deleonibus, “A new Si:C epitaxial channel nMOSFET architecture with improved drivability and short-channel characteristics,” VLSI Symp. Tech. Dig. (2003) 51–52.
[28] K. -W. Ang, K. -J. Chui, V. Bliznetsov, A. Du, N. Balasubramanian, M. F. Li, G. Samudra, and Y. -C. Yeo, “Enhanced performance in 50 nm n-MOSFETs with silicon-carbon source/drain regions,” IEDM Tech.Dig. (2004) 1069–1071.
[29] H. J. Osten, G. Lippert, J. P. Liu, and D. Kruger, “Influence of Carbon incorporation on dopant surface segregation in molecular-beam epitaxial growth of silicon,” Appl. Phys. Lett. 77 (2000) 2000–2002.
[30] 林宏年,呂嘉裕,林鴻志,黃調元,「局部與全面形變矽通道(strained Si channel) 互補式金氧半(CMOS) 之材料、製程與元件特性分析(I)」,奈米通訊,第十二卷,第一期,44~49頁。
[31] M. Chu, Y. Sun, U. Aghoram, S. E. Thompson, “Strain: asolution for higher carrier mobility in nanoscaleMOSFETs,”Annual Review of Materials Research 39 (2009) 203-229.
[32] Wee Chee, S. Maikop, and C. -Y. Yu, “Mobility-enhancement technologies,” Circuits and Devices Magazine, IEEE 21 (2005) 21-36.
[33] S. Thompson, G. Sun, K. Wu, J. Lim, and T. Nishida, “Key differences for process-induced uniaxial vs. substrate-induced biaxial stressed Si and Ge channel MOSFETs,” IEDM Tech. Dig. (2004) 221-224.
[34] O. Nakatsuka, K. Okubo, A. Sakai, M. Ogawa, Y. Yasuda, and S. Zaima, “Improvement in NiSi/Si contact properties with C-implantation,” Microelectron. Eng. 82 (2005) 479-484.
[35] V. Machkaoutsan, S. Mertens, M. Bauer, A. Lauwers, K. Verheyden, K. Vanormelingen, P. Verheyen, R. Loo, M. Caymax, S. Jakschik, D. Theodore, P. Absil, S. G. Thomas, and E. H. A. Granneman, “Improved thermal stability of Ni-silicides on Si:C epitaxial layers,” Microelectron. Eng. 84 (2007) 2542-2546.
[36] S. W. Lee, S. H. Huang, S. L. Cheng, P. S. Chen, and W. W. Wu, “Ni silicide formation on epitaxial Si1−yCy/(001) layers,” Thin Solid Films 518 (2010) 7394-7397.
[37] C. Chen, Electron Beam Lithography for Nanoelectronics,奈米設備與檢測研討會(http://nano-taiwan.sinica.edu.tw/2003NanoConferences.ASP)
[38] A. J. Haes, C. L. Haynes, and R. P. Van Duyne, “Nanosphere lithography: self-assembled photonic and magnetic materials,” Mat. Res. Soc. Symp. 636 (2001) 1-6.
[39] M. Ratner and D. Ratner, “Nanotechnology: a gentle introduction to the next big idea,” Chapter 4, 2003, Prentice Hall.
[40] 廖明吉,「0.1微米世代的微影解決方法奈米通訊」,第五卷,第四期,28~32頁。
[41] E. Miyauchi, H. Arimoto, and H. Kitada, “Ion species and energy control of finely focused RBs for maskless in situ microfabrication processes,” Nucl. Instrum. Methods B39 (1989) 515-520.
[42] J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, “Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103 (1999) 3854-3863.
[43] G. Horneck and B. K. Christa (2001) “Astrobiology: the quest for the conditions of life, part vcomplexity and life, molecular self-assembly and the origin of life,” Spriger press, p.360-372.
[44] G. M. Whitesides and B. Grzybowski, “Self-assembly at all scales,” Science 295 (2002) 2418-2421.
[45] S. M. Yang, N. Coombs, and G. A. Ozin, “Micromolding in inverted polymer opals (MIPO): synthesis of hexagonal mesoporous silicaopals,” Adv. Mater. 12 (2000) 1940-1944.
[46] H. J. Nam, D. Y. Jung, G. Y, and H. Choi, “Close-packed hemispherical microlens Array from two-dimensional ordered polymeric microspheres,” Langmuir 22 (2006) 7358-7363.
[47] F. Fleischhaker, A. C. Arsenault, Z. Wang, V. Kitaev, F. C. Peiris, G. V. Freymann, I. Manners, R. Zentel, and G. A. Ozin, “Redox-tunable defects in colloidalphotonic crystals,”Adv. Mater. 17 (2005) 2455–2458.
[48] J. Dutta and H. Hofmann, “Self-organization of colloidal nanoparticles,” Encyclopedia of Nanosci. And Nanotech. X (2003) 1–23.
[49] F. Jarai-Szabo, S. Astilean and Z. Neda, “Understanding self-assembled nanosphere patterns,” Chem. Phys. Lett. 408 (2005) 241–246.
[50] N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama, “Mechanism of frmation of two-dimensional crystals from latex particles on substrates,” Langmuir 8 (1992) 3183-3190.
[51] P. A. Kralchevsky, V. N. Paunov, I. B. Ivanov, and K. Nagayama, “Capillary meniscus interactions between colloidal particles attached to a liquid-fluid interface,” J. Colloid Interface Sci. 151 (1992) 79-94.
[52] P. A. Kralchevsky, V. N. Paunov, N. D. Denkov, I. B. Ivanov, and K. Nagayama, “Energetical and force approaches to the capillary interactions between particles attached to a liquid-fluid interface,” J. Colloid Interface Sci. 155 (1993) 420-437.
[53] P. A. Kralchevsky and K. Nagayama, “Capillary forces between colloidal particles,” Langmuir 10 (1994) 23-36.
[54] K. Nagayama, “Two-dimensional self-assembly of colloids in thin liquid films,” Colloids Surf. A 109 (1996) 363-374.
[55] H. W. Deckman, and J. H. Dunsmuir, “Natural lithography," Appl. Phys. Lett. 41 (1982) 377-379.
[56] J. C. Hulteen, and R. P. van Duyne, “Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13 (1995) 1553-1558.
[57] N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama, “Mechanism of formation of two-dimensional crystals from latex-particles on substrates,” Langmuir 8 (1992) 3183-3190.
[58] R. Micheletto, H. Fukuda , and M. Ohtsu, "A simple method for the production of a two-dimensional, ordered array of small latex particles," Langmuir 11 (1995) 3333-3336.
[59] J. Rybczynski, U. Ebels, and M. Giersig, “Large-scale, 2D arrays of magnetic nanoparticles,” Colloids Surf. Physicochem. Eng. Aspects 219 (2003) 1-6.
[60] R. P. V. Duyne, J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, and T. R. Jensen, “Nanosphere lithography: Size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103 (1999) 3854-3863.
[61] V. Ng, Y. V. Lee, B. T. Chen, and A. O. Adeyeye, “Nanostructure array fabrication with temperature-controlled self-Assembly techniques,” Nanotechnology 13 (2002) 554-558.
[62] D. Wang and H. Mohwald, “Rapid fabrication of binary colloidal crystals by stepwise spin-coating,” Adv. Mater. 16 (2004) 244-247.
[63] F. Burmeister, C. Schäfle, T. Matthes, M. Böhmisch, J. Boneberg, and P. Leiderer, “Colloid monolayers as versatile lithographic masks,” Langmuir 13 (1997) 2983-2987.
[64] A. Winkleman, B. D. Gates, L. S. McCarty, and G. M. Whitesides, “Directed self-assembly of spherical particles on patterned electrodes by an applied electric field,” Adv. Mater. 17 (2005) 1507-1511.
[65] R. Xie and X. Y. Liua, “Epitaxial assembly and ordering of two-dimensional colloidal crystals,” Appl. Phys. Lett. 92 (2008) 083106-1-3.
[66] X. H. Xia, J. P. Tu, J. Y. Xiang, X. H. Huang, X. L. Wang, and X. B. Zhao, “Hierarchical porous cobalt oxide array films prepared by electrodeposition through polystyrene sphere template and their applications for lithium ion batteries,” Journal of Power Sources 195 (2010) 2014-2022.
[67] H. Yan, Y. Yang, Z. Fu, B. Yang, L. Xia, S. Fu, and F. Li, “Fabrication of 2D and 3D ordered porous ZnO films using 3D opal templates by electrodeposition,” Electrochemistry Communications 7 (2005) 1117-1121.
[68] M. A. Ghanem, P. N. Bartlett, P. de Groot, and A. Zhukov, “A double templated electrodeposition method for the fabrication of arrays of metal nanodots,” Electrochemistry Communications 6 (2004) 447-453.
[69] Z. Chen, P. Zhan, Z. Wang, J. Zhang, W. Zhang, N. Ming, C. Ting, and P. Sheng, “Two-and three-dimensional ordered structures of hollow silver spheres prepared by colloidal crystal templating,” Adv. Mater. 16 (2004) 417-422.
[70] S. Zhu and Y. Fu, “Fabrication and characterization of nanostructured metallic arrays with multi-shapes in monolayer and bilayer,” J. Nanopart. Res. 12 (2010) 1829-1835.
[71] J. C. Hulteen, and R. P. Van Duyne, “Nanosphere lithpography: A materials general fabrication process for periodic particle array surface,” J. Vac. Sci. Technol. A 13 (1995) 1553-1558.
[72] A. Kosiorek, W. Kandulski, H. Glaczynska, and M. Giersig, “Fabrication of nanoscale rings, dots, and rods by combining shadow nanosphere lithography and annealed polystyrene nanosphere masks,” Small 4 (2005) 439-444.
[73] X. D. Wang, E. Graugnard, J. S. King, Z. L. Wang, and C. J. Summers, “Large-scale fabrication of ordered nanobowl arrays,” Nano Lett. 4 (2004) 2223-2226.
[74] F. Q. Zhu, D. Fan, X. Zhu, J. G. Zhu, R. C. Cammarata, and C. L. Chien, “Ultrahigh-density arrays of ferromagnetic nanorings on macroscopic areas,” Adv. Mater. 16 (2004) 2155-2159.
[75] D. Byrne, A. Schilling, J. F. Scott , and J. M. Gregg, “Ordered arrays of lead Zirconium Titanate,” Nanotechnology 19 (2008) 165608-1-5.
[76] Y. Zhang, X. Wang, and Y. Wang, “Ordered nanostructures array fabricated by nanosphere lithography,” J. Alloys Compd. 452 (2008) 473-477.
[77] K. Kempa, B. Kimball, J. Rybczynski, Z. P. Huang, P. F. Wu, D. Steeves, M. Sennett, M. Giersig, D. V. G. L. N. Rao, D. L. Carnahan, D. Z. Wang, J. Y. Lao, W. Z. Li, and Z. F. Ren, “Photonic crystals based on periodic arrays of aligned carbon nanotubes,” Nano Lett. 3 (2003) 13-18.
[78] K. H. Park, S. Lee, K. H. Koh, R. L. KBK, and T. W. Milne, “Advanced nanosphere lithography for the areal-density variation of periodic arrays of vertically aligned carbon nanofibers,” J. Appl. Phys. 97 (2005) 024311-024314.
[79] Y. Li, E. J. Lee, W. Cai, K. Y. Kim, and S. O. Cho,“Unconventional method for morphology-controlled carbonaceous nanoarrays based on electron irradiation of a polystyrene colloidal monolayer,” ACSNano 2 (2008) 1108-1112.
[80] Y. Li, N. Koshizaki, Y. Shimizu, L. Li, S. Y. Gao, and T. Sasaki, “Unconventional lithography for hierarchial micro/nanostructure arrays with well-aligned 1D crystalline nanostructures: Design and creation based on the colloidal monolayer,” ACS Appl. Mater. Inter. 1 (2009) 2580-2585.
[81] C. M. Zhou and D. Gall, “Surface patterning by nanosphere lithography for layer growth with ordered pores,” Thin Solid Films 516 (2007) 433-437.
[82] M. A. Green (1982) “Solar Cells: Operating pinciples, technology, and system application,” Prentice-Hall Inc., Englewood Cliffs, NJ, p.164.
[83] R. A. Arndt, J. F. Allison, J. G. Haynos, A. Meulenberg, “Optical properties of the COMSAT non-reflective cell,” Proceedings of 11th IEEE International Specialist Conference, New York (1975) 40.
[84] P. Verlinden, O. Evrard, E. Mazy, A. Crahay, “The surface texturization of solar cells: A new method using v-grooves with controllable sidewall angles,” Sol. Energy Mater. Sol. Cells 26 (1992) 71-78.
[85] D. L. King and Buck, “Experimental optimization of an anisotropic etching process for random texturization of silicon solar cells,” Proceedings of 22nd IEEE International Photovoltaic Specialists Conference, Las Vegas (1991) 303-308.
[86] U. Gangopadhyay, K. H. Kim, S. K. Dhungel, U. Manna, P. K. Basu, M. Banerjee, H. Saha and J. Yi, “A novel low cost texturization method for large area commercial mono-crystalline silicon solar cells,” Solar Energy Materials and Solar Cells 90 (2006) 3557–3567.
[87] I. Zubel and M. Kramkowska, “Development of etch hillocks on different Si(hkl) planes in silicon anisotropic etching,” Surf. Sci. 602 (2008) 1712–1721.
[88] B. Wang, S. J. Chua, and J. Teng, “Novel 2D ordered arrays of nanostructures fabricated through silica masks formed by bilayer colloidal crystals as templates,” IEEE 2 (2005) 717-720.
[89] S. M. Yang, D. G. Choi, S. G. Jang, S. Kim, E. Lee, and C. S. Han, “Multifaceted and nanobored particle arrays sculpted using colloidal lithography,” Adv. Funct. Mater. 16 (2006) 33-40.
[90] S. M. Yang, D. G. Choi, S. Kim, and E. Lee, “Particle arrays with patterned pores by nanomachining with colloidal masks,” J. Am. Chem. Soc. 127 (2005) 1636-1637.
[91] A. Sinitskii, S. Neumeier, J. Nelles, M. Fischler, and U. Simon, “Ordered arrays of silicon pillars with controlled height and aspect ratio,” Nanotechnology 18 (2007) 305307-1~305307-6.
[92] J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9 (2009) 279-282.
[93] W. Li, J. Zhou, X. G. Zhang, J. Xu, L. Xu, W. Zhao, P. Sun, F. Song, J. Wan, and K. Chen, “Field emission from a periodic amorphous silicon pillar array fabricated by modified nanosphere lithography,” Nanotechnology 19 (2008) 135308-1~135308-5.
[94] C. M. Hsu, S. T. Connor, M. X. Tang, and Y. Cui, “Wafer-scale silicon nanopillars and nanocones by langmuir-blodgett assembly and etching,” Appl. Phys. Lett. 93 (2008) 133109-1~133109-3.
[95] Z. Huang, H. Fang, and J. Zhu, “Fabrication of silicon nanowire arrays with controlled diameter, length, and density,” Adv. Mater. 19 (2007) 744–748.
[96] C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B 105 (2001) 5599-5611.
[97] J. H. He, Y. L. Chueh, W. W. Wu, S. W. Lee, L. J. Chen, and L. J. Chou, “The growth of SiGe quantum rings in Au thin filmson epitaxial SiGe on silicon,” Thin Solid Films 469-470 (2004) 478-482.
[98] J. H. He, W. W. Wu, Y. L. Chueh, C. L. Hsin, L. J. Chen, and L. J. Chou, “Formation and evolution of self-assembled crystalline Si nanoringson (001)Si mediated by Au nanodots,”Appl. Phys. Lett. 87 (2005) 223102-1~223102-2.
[99] J. T. Robinson, P. G. Evans, J. A. Liddle, and O. D. Dubon, “Chemical nanomachining of silicon by gold-catalyzed oxidation,” Nano Lett. 7 (2007) 2009-2013.
[100] M. R. Baklanov, I. A. Badmaeva, R. A. Donaton, L. L. Sveshnikova, W. Storm, and K. Maex, “Kinetics and mechanism of the etching of CoSi2 in HF-based solutions,” J. Electrochem. Soc. 143 (1996) 3245-3251.
[101] S. Y. Zhu, G. P. Ru, C. Detavernier, R. L. Van Meirhaeghe, E. Cardon, and B. Z. Li, “The dependence of the etching property of CoSi2 films in diluted HF solutions on the formation conditions,” Appl. Surf. Sci. 178 (2001) 44-49.
[102] X. Fan, G. Zeng, C. L. Bounty, J. E. Bowers, E. Croke, and C. C. Ahn, “A SiGeC/Si superlattice microcoolers,” Appl. Phys. Lett. 78 (2001) 1580-1582.
[103] H. C. Chen, C. W. Wang, S. W. Lee, and L. J. Chen, “Pyramid-shaped Si/Ge superlattice quantum dots with enhanced photoluminescence properties,” Adv. Mater. 18 (2006) 367-370.
[104] H. -W. Kim, S. Choi, S. Hong, H. K. Jung, G. -D. Lee, E. Yoon, and C. S. Kim, “Effect of C incorporation on relaxation of SiGe/Si,” Appl. Phys. Lett. 93 (2008) 221902-221903.
[105] W. -S. Liao, Y. -G. Liaw, M. -C. Tang, K. -M. Chen, S. -Y. Huang, C. -Y. Peng, C. , and W. Liu, “PMOS hole mobility enhancement through SiGe conductive channel and highly compressive ILD-SiNx stressing layer,” IEEE Electron Device Lett. 29 (2008) 86-88.
[106] R. W. Mann, L. A. Clevenger, P. D. Agnello, and F. R. White, “Silicides and local interconnections for high performance VLSI applications,” IBM Journal of Research and Development 39 (1995) 403-417.
[107] M. Marquez and B. P. Grady, “The use of surface tension to predict the formation of 2d arrays of latex spheres formed via the langmuir-blodgett-Like technique,” Langmuir 20 (2004) 10998-11004.
[108] S. L. Cheng, S. W. Lu, C. H. Li, Y. C. Chang, C. K. Huang, and H. Chen,“Fabrication of periodic nickel silicide nanodot arrays using nanosphere lithography,”Thin Solid Films 494 (2006) 307–310.