跳到主要內容

簡易檢索 / 詳目顯示

研究生: 謝秉叡
Bing-Rui Xie
論文名稱: 收斂流場示蹤劑試驗之精確解析解
An exact analytical solution for a convergent flow tracer test
指導教授: 陳瑞昇
Jui-Sheng Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 應用地質研究所
Graduate Institute of Applied Geology
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 81
中文關鍵詞: 示蹤劑試驗移流-延散方程式解析解廣義型積分轉換
外文關鍵詞: tracer test, advection-dispersion equation, analytical solution, generalized integral transform technique
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 移流-延散方程式為用來描述受壓含水層中污染物的傳輸情形,此方程
    式需要輸入關鍵的延散度參數,而示蹤劑試驗是決定此參數最有效的方法。進行示蹤劑試驗選用強制梯度系統,相較於自然梯度,強制梯度比較容易控制流場條件與減少實驗時間,強制梯度收斂流場示蹤劑試驗,其優點能回收大部分示蹤劑,減少對環境衝擊。解析解用來描述示蹤劑試驗是非常有效的,但目前可用的解多為半解析(semi-analytical ),需以Laplace 數值逆轉換方式取得原區域濃度值,目前仍無精確解析解。因此本研究以新的方法求解移流-延散方程式,推導過程使用Laplace 轉換以及廣義型積分轉換(generalized integral transform technique, GITT),消去時間微分項與空間微分項,將偏微分方程轉換成代數方程式,再經由一系列逆轉換求得原時間域之解。將本研究發展的精確解析解與前人發展的半解析進行驗證,結果顯示非常吻合。可以將此方法拓展到其他徑向傳輸問題。


    The advection–dispersion equation (ADE) is generally used to describe the movement of the contaminants in the subsurface environment. Dispersivity is a key input parameter in the ADE. Tracer test is an efficient method for determining dispersivity. Forced gradient tracer tests are preferred over natural gradient experiments because that the flow conditions are well controlled and the duration of the test is reduced. The advantage of the convergent flow tracer tests is the
    possibility of achieving high tracer mass recovery. Analytical solutions are useful
    for interpreting the results of the field tracer test. Currently available solutions are
    mostly limited to semi-analytical solutions. This study develops an explicit analytical solutions for solute transport in a convergent flow tracer test. The solution is achieved by successive applications of integral transform. The robustness and accuracy of the developed solution is proved by excellent agreement between our solution and previous solution.

    目錄 摘要 i Abstract ii 目錄 iii 圖目錄 v 表目錄 vi 一、 前言 1 1-1 研究背景 1 1-2 文獻回顧 2 1-2-1 地下水示蹤劑試驗 2 1-2-2 徑向流場解析解 4 1-3. 研究目的 9 二、 數學模式建立與推導 10 2-1 基本假設與數學模式建立 10 2-1-1 數學模式發展流程 14 2-1-2 數學模式建立 15 2-2. 解析解推導 17 三、 結果與討論 26 3-1. 特徵值問題探討 26 3-2. Gaussian quadrature探討 31 3-3. 數值收斂性測試 35 3-4. 模式比較驗證 39 四、 結論與建議 42 4-1. 結論 42 4-2. 建議 43 參考文獻 44 附錄 46

    [1] T. Ptak, M. Piepenbrink, E. Martac, “Tracer tests for
    the investigation of heterogeneous porous media and
    stochastic modelling of flow and transport-a review
    of some recent developments”, J. Hydrol., 294, 122-
    163, 2004.
    [2] P. A. Hsieh, “A new formula for the analytical
    solution of the radial dispersion problem”, Water
    Resour. Res., 22(11), 1597-1605, 1986.
    [3] A. J. Valocchi, “Effect of radial flow on deviations
    from local equilibrium during sorbing solute
    transport through homogeneous soils”, Water Resour.
    Res., 22(12), 1693–1701, 1986.
    [4] C. S. Chen, “Analytical solution for radial
    dispersion problem with Cauchy boundary at injection
    well”, Water Resour. Res. 23(7), 1217–1224, 1987.
    [5] A. F. Moench, “Convergent radial dispersion: a
    Laplace transform solution for aquifer tracer
    testing”, Water Resour. Res., 25(3), 439–447, 1989.
    [6] A. F. Moench, “Convergent radial dispersion: a note
    on evaluation of the Laplace transform solution”,
    Water Resour. Res., 27(12), 3261–3264, 1991.
    [7] A. F. Moench, “Convergent radial dispersion in a
    double-porosity aquifer with fracture skin:
    analytical solution and application to a field
    experiment in fractured chalk”, Water Resour. Res.,
    31(8), 1823–1835, 1995.
    [8] K. S. Novakowski, “The analysis of tracer experiments
    conducted in divergent radial flow fields”, Water
    Resour. Res., 28(12), 3215-3225, 1992.
    [9] J. S. Chen, C. W. Liu, C. S. Chen, H. D. Yeh, “A
    Laplace transform solution for tracer tests in a
    radially convergent flow field with upstream
    dispersion”, J. Hydrol., 183, 263–275, 1996.
    [10] D. Tomasko, G. P. Williams, K. Smith, “An analytical
    model for simulating step-function injection in a
    radial geometry”, Math. Geol., 33(2), 155–165, 2001.
    [11] J. S. Chen, C. W. Liu, C. M. Liao, “A novel
    analytical power series solution for solute
    transport in a radially convergent flow field”, J.
    Hydrol., 266, 120–138, 2002.
    [12] J. S. Chen, C. W. Liu, H. T. Hsu, C. M. Liao, “A
    Laplace transform power series solution for solute
    transport in a convergent flow field with scale-
    dependent dispersion”, Water Resour. Res., 39(8):
    1229, 2003.
    [13] J. S. Chen, C. S. Chen, C. Y. Chen, “Analysis of
    solute transport in a radially divergent flow tracer
    test with scale-dependent dispersion”, Hydrol.
    Processes, 21, 2526-2536, 2007.
    [14] J. S. Chen, “Analytical model for fully three-
    dimensional radial dispersion in a finite-thickness
    aquifer”, Hydrol. Processes, 24, 934–945, 2010.
    [15] E. J. M. Veling, “Radial transport in a porous
    medium with Dirichlet, Neumann and Robin-type
    inhomogeneous boundary values and general initial
    data: analytical solution and evaluation”, J. Eng.
    Math., 75, 173-189, 2012.
    [16] Q. Wang and H. Zhan, “Radial reactive solute
    transport in an aquifer–aquitard system”, Adv. Water
    Resour. 61, 51–61, 2013.
    [17] J. Q. Huang, “Analytical solutions for efficient
    interpretation of single-well push-pull tracer
    tests”, Water Resour. Res., 46, 2010.
    [18] C. S. Chen and G. D. Woodside “Analytical solution
    for aquifer decontamination by pumping”, Water
    Resour. Res., 24(8), 1329–1338, 1988.
    [19] M. N. Goltz and M. E. Oxley, “Analytical modeling of
    aquifer decontamination by pumping when transport is
    affected by rate-limited sorption”, Water Resour.
    Res., 27(4), 547–556, 1991.
    [20] C. F. Harvey, R. Haggerty, S. M. Gorelick, “Aquifer
    remediation: a method for estimating mass transfer
    rate coefficients and evaluation of pulsed pumping”,
    Water Resour. Res., 30(7), 1979–1991, 1994.
    [21] C. Lu, P. Du, Y. Chen, J. Luo, “Recovery efficiency
    of aquifer storage and recovery (ASR) with mass
    transfer limitation”, Water Resour. Res., 47, 2011.
    [22] D. H. Tang and D. K. Babu, “Analytical solution of a
    velocity dependent dispersion problem”, Water
    Resour. Res., 15(6), 1471–1478, 1979.
    [23] A. F. Moench and A. Ogata, “A numerical inversion of
    the Laplace transform solution to radial dispersion
    in a porous medium”, Water Resour. Res., 17(1), 250–
    252, 1981.
    [24] C. S. Chen, “Analytical and approximate solutions to
    radial dispersion from an injection well to a
    geological unit with simultaneous diffusion into
    adjacent strata”, Water Resour. Res., 21(8), 1069–
    1076, 1985.
    [25] J. S. Pérez Guerrero and T. H. Skaggs, “Analytical
    solution for one-dimensional advection-dispersion
    transport equation with distance-dependent
    coefficients”, J. Hydrol., 390, 57–65, 2010.

    QR CODE
    :::