跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林政誼
CHENG YI LIN
論文名稱: 集水區險峻值於蘭陽溪土石流潛勢溪流之綜整判釋
指導教授: 周憲德
Hsien-Ter Chou
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 65
中文關鍵詞: 蘭陽溪流域土石流潛勢溪流集水區險峻值
外文關鍵詞: Lanyang River watershed, Potential debris flow torrent, Melton Ratio
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用高解析數值地形模型萃取蘭陽溪流域土石流潛勢溪流之地文參數,以了解各土石流潛勢溪流之集水區內溢流點、災害型態及影響範圍。研究區域之河流級序大多以一級與二級河流為主。集水區內之土石流潛勢溪流的地貌參數以各子集水區流域長(L)與集水區險峻值(MR)來判定土石流潛勢溪流具有可行性。統合三個流域資料及大陸土石流溪溝可得流域土砂災害之地貌分類為MR>0.43且L< 7km者為土石流;0.3≤MR≤0.43,且L≤14 km及MR>0.43,且7km ≤ L≤ 14 km者為高含砂水流及土石流並存;MR<0.3則為洪水。當溢流點下游有沖積扇時,堆積扇坡度與流域險峻值之關係可供判釋集水區是否為土石流潛勢溪流之參考條件。


    The morphometric parameters associated with landslides and debris flow ravines in Lanyang River Watershed are analyzed in this study by employing the 5-m high-resolution digital terrain map and field studies. The total length of the first- and second-order streams present the majority of each watershed. The morphometric parameters such as Melton Ratio and drainage length are applied to identify the debris-flow prone ravines. However the use of Melton Ratio (MR) combined with drainage length (L) analysis results that are not classified as debris flow causes may be affected by slope, the geological or protected targets. The systemized geomorphic thresholds for debris-flow prone watershed are : debris flows for MR>0.43 and L< 7km;0.3≤MR≤0.43 and L≤14 km , or MR>0.43 and 7km ≤ L≤ 14 km for the coexistence of debris flows and debris floods; MR<0.3 for floods. The fan slope and the Melton ratio can also serve as an indicator for debris-flow ravines。

    摘要 V 目錄 VIII 圖目錄 X 表目錄 XII 第一章 緒論 1 1.1 前言 1 1.2 研究目的 2 1.3 研究方法 3 1.4 論文結構 3 第二章 文獻回顧 5 2.1 土石流災害定義 5 2.2 軟體原理 6 2.2.1 數值高程模型 6 2.2.2 集水區水文模型 7 2.3 集水區險峻值相關研究 10 2.4 集水區溪溝門檻值 12 2.5 沖積扇特徵地貌相關研究 13 第三章 研究方法 15 3.1 研究區域 15 3.2 研究步驟 18 3.3 集水區險峻值分析 19 3.4 水文分析 20 3.5 溪溝門檻值分析 21 3.6 沖積扇特徵地貌分析 22 第四章 結果分析與討論 23 4.1 蘭陽溪流域集水區險峻值分析 23 4.2 蘭陽溪流域水文分析 30 4.3 蘭陽溪流域沖積扇特徵地貌分析 33 4.4 現勘調查 36 4.4.1 宜縣DF144現勘 44 第五章 結論與建議 47 5.1 結論 47 5.2 建議 47 參考文獻 48

    1. 今村遼平(2012)。地形工學入門-地形の見方‧考え方,鹿島出版會,第158-160頁。
    2. 李璟芳、黃韋凱、冀樹勇(2015)。遙測新利器—立體彩繪明暗圖,地工技術,第113期,第113-115頁。
    3. 沈淑敏、葉懿嫻、黃健政、張瑞津、劉盈劭(2007)。花東縱谷北段的土石流扇和土石流溪溝的認定,中華水土保持學報,第38卷第4期,第311-324頁。
    4. 周憲德、曹鼎志、李璟芳(2017),土石流潛勢溪流之地文因子綜整判定,水土保持局期末報告書。
    5. 陳培源(1993)。野外及礦業地質學(第二版),正中書局,第580頁。
    6. 陳樹群,安軒霈(2012)。河川型態五層分類法架構與應用,中華水土保持學報,第43期,第21-40頁。
    7. 孫稜翔,蔡衡(2008)。八卦山背斜集水區地形計測指標於活動構造意義之探討。地理研究,第49期。
    8. 孫稜翔(2011)。八卦臺地山麓沖積扇型態之研究。地理學報,61期,第81-104頁。
    9. 張瑞津、石再添、楊淑君、林譽方、陳翰霖(1994)。花東縱谷沖積扇的地形學研究,國立臺灣師範大學地理研究報告,第21期,第43-74頁。.
    10. 詹錢登(2000)。土石流概論,科技圖書股份有限公司。
    11. Bertrand, M., Liébault, F., Piégay, H., 2017. Cartographie régionale de la susceptibilité aux laves torrentielles dans les Alpes du Sud, Revue de géographie alpine, 105-4.
    12. Bovis, M.J., Jakob, M., 1999. The role of debris supply conditions in predicting debris flow activity. Earth Surf Process Landforms 24, 1039–1054.
    13. Bowman, D., 2019. Principles of Alluvial Fan Morphology. Springer Netherlands.
    14. Buccolini, M., Coco, L., Cappadonia, C., Rotigliano, E., 2012. Relationships between a new slope morphometric index and calanchi erosion in northern Sicily, Italy. Geomorphology 149–150, 41–48.
    15. Buccolini, M., Coco, L., 2013. MSI (morphometric slope index) for analyzing activation and evolution of calanchi in Italy. Geomorphology 191, 142–149.
    16. Bull, W.B., 1962. Relations of alluvial fan size and slope to drainage basin size and lithology in western Fresno County. Geological Survey Professional Paper 450B: 51-3.
    17. Bull, W.B., 1977. The alluvial fan environment. Progress in Physical Geography 1: 223-70.
    18. Cobby, D.M., Mason, D.C., Davenport, I.J., 2001. Image Processing of Airborne Scanning Laser Altimetry Data for Improved River Flood Modeling. ISPRS Journal of Photogrammetry & Remote Sensing 56, 121-138.
    19. Costa, J.E., 1984. Physical geomorphology of debris flows. Developments and Applications of Geomorphology, 268-317.
    20. Crosta, G.B., Frattini, P., 2004. Controls on modernalluvial fan processes in the central Alps, northern Italy. Earth Surface Processes and Landforms 29, 267-293.
    21. De, H.T., Woerkom, T.V., 2016. Bed scour by debris flows: experimental investigation of effects of debris-flow composition. Earth Surface Processes and Landforms 41(13).
    22. Grelle, G., Rossi, A., Revellino, P., Guerriero, L., Guadagno, F.M., Sappa, G., 2019. Assessment of Debris-Flow Erosion and Deposit Areas by Morphometric Analysis and a GIS-Based Simplified Procedure: A Case Study of Paupisi in the Southern Apennines. Sustainability 11(8), 2382.
    23. Hooke, R.L., 1968. Steady-state relationships on arid-region alluvial fans in closed basins. American Journal of Science 266(8), 609–629.
    24. Horton, R.E., 1945. Erosional development of streams and theirdrainage basins. Hydrophysical approach to quantitative morphology, Bulletin, G.S.A., 56, 275-370.
    25. Jackson, L.E., Kostaschuck, R.A., MacDonald, G.M. 1987. Identification of debris flow hazard on alluvial fan in the Canadian Rocky Mountains. Geological Society of America, Reviews in Engineering 7, 115–124.
    26. Jenson, S.K., Domingue, J.O., 1988. Extracting topographic structure from digital elevation data for geographic information system analysis. Photogrammetric Engineering and Remote Sensing, 54(11), 1593-1600.
    27. Kochel, R.C., Johnson, R.A., 1984. Geomorphology and sedimentology of humid-temperate alluvial fans, Central Virginia. In: E.H. Koster and R.J. Steel (Editors), Sedimentology of Gravels and Conglomerates. Can. Soc. Pet. Geol. Mem., 10, 109-122.
    28. Lecce, S. A., 1991. Influence of lithologic erodibility on alluvial fan area, western White Mountains, California and Nevada. Earth Surface Processes and Landforms 16, 11-18.
    29. Marchi, L., Fontana, G.D., 2005. GIS morphometric indicators for the analysis of sediment dynamics in mountain basins. Environmental Geology 48, 218–228.
    30. Melton, M. A. 1965. The geomorphic and paleoclimatic significance of alluvial deposits in southern Arizona. Journal of Geology 73, 1-38.
    31. Millard, T.H., Wilford, D.J., Oden, M.E., 2006. Coastal fan destabilization and forest management. Final FIA-FSP Report, Project Y062324.
    32. Miller, C.L., Laflamme, R.A., 1958. The digital terrain model-theory and application. Photogrammetric Engineering 24, 433– 442.
    33. Montgomery, D.R., Dietrich, W.E., 1992. Channel initiation and the problem of landscape scale. Science, 255, 826-830.
    34. Nettleton, I.M., Martin, S., Hencher, S., Moore, R., 2005. Debris flow types and mechanisms. Crown Press, Edinburgh, 119.
    35. O’Callaghan, J.F., Mark, D.M., 1984. The Extraction of Drainage Networks from Digital levation Data. Computer Graphics and Image Processing, 28, 323-344.
    36. Prenner, D., Hrachowitz, M., Kaitna, R.,2019. Trigger characteristics of torrential flows from high to low alpine regions in Austria. Science of the Total Environment 658 , 958–972.
    37. Strahler, A.N., 1952. Hypsometric analysis of erosional topography. Bulletin, G.S.A., 63, 1117-1142.
    38. Scally, F.A.D., Owens, I.F., 2004. Morphometric controls and geomorphic responses on fans in the Southern Alps, New Zealand. Earth surface processes and landforms, 29, 311-322.
    39. Stefano, C.D., Ferro, V., 2019. Assessing sediment connectivity in dendritic and parallel calanchi systems. Catena 172, 647–654.
    40. Törmä, M., 2000. Estimation of Tree Species Proportions of Forest Stands Using Laser Scanning, International Archives of Photogrammetry and Remote Sensing, Vol. XXXIII, Part B7, 1524-1531.
    41. Tseng, C.M., Lin, C.W., Fontana, D.G., Tarolli, P., 2015. The topographic signature of a Major Typhoon. Earth Surf. Processes Landforms.
    42. Welsh, A., Davies, T., 2011. Identification of alluvial fans susceptible to debris-flow hazards. Landslides, 8, 183–194.
    43. Wohl, E., 2018. The challenges of channel heads. Earth-Sci., 185, 649–664.
    44. Wilford, D.J., Sakals M.E., Innes J.L., Sidle R.C., Bergerud W.A., 2004. Recognition of debris flow, debris flood and flood hazard through watershed morphometrics. Landslides, 1, 61–66.
    45. Zaginaev, V., Petrakov, D., Erokhin, S., Meleshkoa, A., Stoffel, M., Ballesteros-Cánovas, J.A., 2019. Geomorphic control on regional glacier lake outburst flood and debris flow activity over northern Tien Shan. Global and Planetary Change, 176, 50–59.
    46. Zhou, W., Tang, C., Van Asch, T.W.J., Chang, M., 2016. A rapid method to identify the potential of debris flow development induced by rainfall in the catchments of the Wenchuan earthquake area. Landslides, 13(5), 1–17.

    QR CODE
    :::