跳到主要內容

簡易檢索 / 詳目顯示

研究生: 鄭顯威
Jackson Chang Hian Weui
論文名稱: 使用基於CMAQ-PMF的綜合指數探討對流層臭氧化學對都市的影響及臭氧減少策略
Urban impacts on tropospheric ozone chemistry and ozone abatement strategy using a CMAQ-PMF-based composite index
指導教授: 林能暉
Lin Neng-Huei
口試委員:
學位類別: 博士
Doctor
系所名稱: 地球科學學院 - 大氣科學學系
Department of Atmospheric Sciences
論文出版年: 2022
畢業學年度: 111
語文別: 英文
論文頁數: 254
中文關鍵詞: 對流層臭氧臭氧減少都市
外文關鍵詞: tropospheric ozone, ozone abatement, urban
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來快速的城市化對局部範圍的大氣環流產生了深遠的影響,但對於控制對流層臭氧濃度的物理及化學反應機制仍然沒有完整的解釋。台灣由於嚴格的排放政策,相較於1994年,現今氮氧化物(NOx)和揮發性有機化合物(VOCS)的環境濃度已減少將近60%。然而,減少這些前驅物並未使臭氧的年均濃度呈現線性的變化,在過去的十年間反而出現增加或趨於平緩的趨勢。因此,必須廣泛調查城市對於對流層臭氧化學的影響,以制定有效減少臭氧排放的方針。本研究針對台灣南部地區,其為一個由沿海城市、工業園區和內陸山區所組成的複雜區域,並經常於換季的時候(4-5月及10-11月)發生高臭氧事件。在本篇論文中,吾人將使用城市規模解析度1.0 x 1.0 公里的WRF-CMAQ模式,模擬臭氧及其前驅物(如:NOx 、VOCS)的時空分布。
    首先,吾人調查城市地表和當地環流的相互作用對當地氣候和臭氧空氣品質造成的影響。並對使用相同排放源但不同的特定地區進行了兩次模擬:城市情形代表當前城市化的現況;非城市情形則用農田取代所有城市網格。結果顯示,當城市熱島(UHI)氣流匯聚並停滯在城市上空時,會形成環流並將污染物困在較高的高度,並發現在1000-1500公尺的高空,羥基自由基與VOC的反應增加2.0-2.4 ppbv h-1。在夜間,城市情形因為較深的邊界層使NOx混合比稀釋了17 ppbv,同時也削弱滴定效應,導致市區臭氧濃度升高了15 ppbv。當UHI垂直混合減弱時,臭氧會從高空向下擴散至地表並進一步降低夜間的空氣品質。
    再者,吾人針對台灣南部城市及內陸地區邊界層內的O3、NOx和NMHC進行收支調查。在近地表的收支中,化學過程和乾沉降是使O3匯入的主要原因,並且分別貢獻10 ppbv h-1 和15 ppbv h-1以上;近地表的O3垂直擴散超過30 ppbv h-1。在邊界層收支中,化學過程是O3主要來源,而垂直擴散也會使O3匯入。物理化學牽涉近地表污染物的垂直擴散並增強PBL層上層的光化學反應來產生O3,並佔據城市中O3的主要地位。這種垂直交換的過程主要是因為大氣能夠垂直擴散的結果,並隨高度增加逐漸地減弱交換效率。本研究結果發現白天的海風環流會將城市中受污染的氣團推向內陸,並且因為NOx的限制條件,大大增強了內陸臭氧的生成,因此即使控制內陸地區的NOx排放,也會受海陸風影響而沒有成效,然而大部分的城市地區,由於VOC的限制條件,控制VOC排放有助於降低O3的排放。
    最後,吾人基於CMAQ-PMF開發一個綜合指數,用來確認VOC的來源種類對於減少臭氧生成的貢獻性。利用 CMAQ-Higher Direct Decouple Method (HDDM) 確認研究區域的臭氧濃度對全域(即城市、郊區和農村)所排放之NOx和VOC的一階、二階交叉敏感性(cross sensitivities)。並發現南台灣城市地區(內陸地區)的臭氧生成敏感度因子,主要受在VOC限制條件(NOx限制條件下)下的NOx負一階敏感度主導。大部分城市地區表明負O3凸反應曲線對NOx排放表現出負二階敏感度,其中 NOx因排放很大程度上被非線性效應減弱而使O3線性增加。由於嚴格的VOC限制政策和減少或增加NOx排放對生成O3相對地不敏感,本研究追求對臭氧形成最大貢獻VOC種類。VOC使用PMF分析並解決八個因素,包括混合工業(21%)、車輛排放(22%)、溶劑使用(17%)、生物源(12%)、塑膠工業(10%)、老化氣團(7%)、機車尾氣(7%)和製造業(5%)。研究結果顯示基於CMAQ-PMF的綜合指數,VOC的控制措施應優先考慮以下排放源:(1)油漆、塗料及印刷業對容易的使用,會排放大量的甲苯和二甲苯;(2)汽油車所排放的n-丁烷、異戊烷、異丁烷和n-戊烷;(3)石化業排放的乙烯及丙烯。


    Recent rapid urbanization has had a profound impact on local-scale atmospheric circulation but its impacts on the physical and chemical processes controlling the tropospheric ozone remain poorly resolved. In Taiwan, due to the strict emission policy, the ambient concentrations of nitrogen oxides (NOx) and volatile organic compounds (VOCs) have reduced by nearly 60% since 1994. However, such reduction in precursors has not been linearly reflected on the annual mean ozone concentration, but an increasing or flattening trend is seen in the last decade. Therefore, a comprehensive investigation on the urban impacts on tropospheric ozone chemistry is necessary for prescribing an effective ozone abatement strategy. Our study area focuses on southern Taiwan, a complex region of coastal urban and industrial parks and inland mountainous areas, where high ozone episode often occurs during the seasonal transition period (i.e. Apr-May and Oct-Nov). In this thesis, we modelled the spatial and temporal distribution of ozone and its precursors (i.e. NOx and VOCs) using WRF-CMAQ model at urban scale resolution 1.0 x 1.0 km.

    Firstly, we investigated the impacts of urban land-surface forcing and its interaction with local circulations on local meteorology and ozone air quality. Two simulations were performed with the same emissions but different land cover designations: URBAN scenario represents the current urbanized condition and NO-URBAN scenario replaces all urban grid cells with cropland. It was shown that when the urban-heat-island (UHI) convergent flow stalls over the city, a circulation flow is formed and traps the pollutants at an elevated height, increasing the reaction of hydroxyl radical with VOCs by 2.0-4.0 ppbv h-1 at 1000-1500 m. At nighttime, the deeper boundary layer of URBAN scenario diluted NOx mixing ratio by 17 ppbv and weakened the titration effect, causing higher O3 concentration by 15 ppbv in the urban area. When the UHI vertical mixing diminished, the O3 aloft diffused downward to the surface level and further degraded the nighttime air quality.

    Secondly, we examined the budget analysis of boundary-layer O3, NOx and NMHC over the urban and inland area of southern Taiwan. In the near-surface budget, chemical process and dry deposition are the main sink of O3 with the contribution more than 10 ppbv h-1 and 15 ppbv h-1, respectively; the major source of near-surface O3 is vertical diffusion exceeding 30 ppbv h-1. In the boundary-layer budget, chemical process is the main source while vertical diffusion becomes the sink for O3. The physiochemical circulation involves the vertical transport of near-surface pollutants and enhances photochemical production of O3 in the upper PBL level is dominant in urban areas. This vertical exchange is mainly attributed to the vertical diffusion process and gradually decreases with heights. Our results highlighted the important role of daytime sea breeze circulation pushing the polluted urban air masses into the inland region which greatly enhanced the inland O3 production due to the NOx-limited condition. Thus, control of NOx emission in inland area may be ineffective due to the dynamics role of land-sea breeze; whereas most of the urban areas are characterized by VOC-limited condition where control of VOCs emission is helpful to reduce urban O3 concentration.

    Thirdly, we developed a CMAQ-PMF-based composite index to identify the key VOC source-species for effective ozone abatement strategy. First-order, second-order and cross sensitivities of ozone concentrations to domain-wide (i.e. urban, suburban and rural) NOx and VOC emissions were determined for the study area using CMAQ-Higher Direct Decoupled Method (HDDM). Negative (positive) first-order sensitivities to NOx emissions are dominant over urban (inland) areas, confirming ozone production sensitivity favors the VOC-limited regime (NOx-limited regime) in southern Taiwan. Most of the urban areas exhibited negative second-order sensitivity to NOx emissions, indicating a negative O3 convex response where the linear increase of O3 from decreasing NOx emissions was largely attenuated by the non-linear effects. Due to the solidly VOC-limited regime and the relative insensitivity of O3 production to increases or decreases of NOx emissions, this study pursued the VOC species that contributed the most to ozone formation. PMF analysis driven by VOCs resolved 8 factors including mixed industry (21%), vehicle emissions (22%), solvent usage (17%), biogenic (12%), plastic industry (10%), aged air mass (7%), motorcycle exhausts (7%), and manufacturing industry (5%). Based on the CMAQ-PMF-based composite index, our results indicate that VOC control measures should prioritize (1) solvent usage for painting, coating and the printing industry, which emits abundant toluene and xylene, (2) gasoline fuel vehicle emissions of n-butane, isopentane, isobutane and n-pentane, and (3) ethylene and propylene emissions from the petrochemical industry.

    Abstract i Abstract (Chinese) iii Acknowledgment iv Content v List of Figures viii List of Tables xiii Chapter 1: Introduction 1.1 Background Study 1 1.2 Problem Statement 3 1.3 Proposed Workflow 5 1.4 Objective 7 1.5 Scope 7 Chapter 2: Literature Review 2.1 WRF Urban Canopy Model 8 2.2 Bulk Urban Parameterization 10 2.3 Single-layer Urban Canopy Model 11 2.3.1 Solar fluxes 12 2.3.2 Longwave fluxes 13 2.3.3 Sensible heat flux 14 2.3.4 Wind speed in the canyon 15 2.3.5 Surface temperature 16 2.4 Multi-layer Urban Canopy Model 17 2.4.1 Momentum 18 2.4.2 Temperature 19 2.4.3 Turbulent kinetic energy 20 2.5 CMAQ Carbon Bond Mechanism 20 2.6 Impact of Urban Land-Surface Forcing on Ozone Pollution 23 2.6.1 Interaction between urban heat island (UHI) and local circulations 25 2.7 Budget Analysis of Ozone, NOx, VOC 28 2.7.1 North & South America 28 2.7.2 Asia 30 Chapter 3: Impacts of land-surface forcing on local meteorology and ozone concentrations in a heavily industrialized coastal urban area 3.1 Introduction 37 3.2 Method 40 3.2.1 Study area 40 3.2.2 Episode description 41 3.2.3 Meteorology modelling system 41 3.2.4 Air quality modelling system 43 3.2.5 Experimental design 45 3.3 Result & Discussion 45 3.3.1 Model evaluation 45 3.3.2 Impacts of urban land-surface forcing on local meteorology 48 3.3.3 Impacts of urban modified boundary-layer on air quality 51 3.3.4 Interaction of urban-breeze and land-sea breeze on ozone air quality 54 3.3.5 Process analysis 61 3.3.6 Implications 66 3.4 Conclusion 68 Chapter 4: Process analysis of boundary-layer O3, NOx and NMHC in southern Taiwan 4.1 Introduction 70 4.2 Method 73 4.2.1 WRF-CMAQ model configuration 73 4.2.2 Gridded anthropogenic and biogenic emission 75 4.2.3 Urban canopy approach 77 4.2.4 Model evaluation 79 4.3 Results & Discussions 80 4.3.1 General description of local photochemical pollution 80 4.3.2 Near-surface ozone budget analysis 84 4.3.3 Boundary-layer budget analysis: O3, NOx and NMHC 87 4.3.4 Ozone production regime 102 4.3.5 Implications 109 4.4 Conclusion 112 Chapter 5: Development of a CMAQ-PMF-based composite index for prescribing an effective ozone abatement strategy: A case study of sensitivity of surface ozone to precursor VOC species in southern Taiwan 5.1 Introduction 115 5.2 Method 118 5.2.1 Study period & area 118 5.2.2 WRF-CMAQ model configuration 119 5.2.3 Higher-order decoupled direct method (HDDM) 122 5.2.4 Positive matrix factorization (PMF) model 125 5.3 Results & Discussion 130 5.3.1 Decomposition of ozone response 130 5.3.2 Taylor-series expansion approximation 133 5.3.3 Sensitivity of individual modeled VOC species 137 5.3.4 Descriptive statistics of PAMS-VOC data & PMF optimal solution 144 5.3.5 Dominant sources of highly sensitive VOC species 148 5.4 Conclusion 153 Chapter 6: Summary 6.1 Key contributions 155 6.2 Future works 157 Appendix A: Supplementary Materials Chapter 3 158 Appendix B: Supplementary Materials Chapter 4 179 Appendix C: Supplementary Materials Chapter 5 186 Bibliography 207

    An, J., Zhu, B., Wang, H., Li, Y., Lin, X., Yang, H., 2014. Characteristics and source apportionment of VOCs measured in an industrial area of Nanjing, Yangtze River Delta, China. Atmos. Environ. 97, 206–214. https://doi.org/10.1016/j.atmosenv.2014.08.021
    Anjos, M., Lopes, A., de Lucena, A.J., Mendonça, F., 2020a. Sea breeze front and outdoor thermal comfort during summer in Northeastern Brazil. Atmosphere (Basel). 11. https://doi.org/10.3390/atmos11091013
    Anjos, M., Targino, A.C., Krecl, P., Oukawa, G.Y., Braga, R.F., 2020b. Analysis of the urban heat island under different synoptic patterns using local climate zones. Build. Environ. 185. https://doi.org/10.1016/j.buildenv.2020.107268
    Ao, X., Wang, L., Zhi, X., Gu, W., Yang, H., Li, D., 2019. Observed synergies between urban heat islands and heat waves and their controlling factors in Shanghai, China. J. Appl. Meteorol. Climatol. 58, 1955–1972. https://doi.org/10.1175/JAMC-D-19-0073.1
    Arnfield, A., Grimmond, C., 1998. An urban canyon energy budget model and its application to urban storage heat flux modeling. Energy Build. 27, 61–68.
    Arter, C.A., Arunachalam, S., 2021. Assessing the importance of nonlinearity for aircraft emissions’ impact on O3 and PM2.5. Sci. Total Environ. 777, 146121. https://doi.org/10.1016/j.scitotenv.2021.146121
    Ashmore, M.R., 2005. Assessing the future global impacts of ozone on vegetation. Plant, Cell Environ. 28, 949–964. https://doi.org/10.1111/j.1365-3040.2005.01341.x
    Atkinson, R., 1997. Gas-phase tropospheric chemistry of volatile organic compounds: 1. Alkanes and alkenes. J. Phys. Chem. Ref. Data 26, 215–290. https://doi.org/10.1063/1.556012
    Atkinson, R., Arey, J., 2003. Gas-phase tropospheric chemistry of biogenic volatile organic compounds: A review. Atmos. Environ. 37, 197–219. https://doi.org/10.1016/S1352-2310(03)00391-1
    Avnery, S., Mauzerall, D.L., Liu, J., Horowitz, L.W., 2011. Global crop yield reductions due to surface ozone exposure: 1. Year 2000 crop production losses and economic damage. Atmos. Environ. 45, 2284–2296. https://doi.org/10.1016/j.atmosenv.2010.11.045
    Baik, J.J., Lim, H., Han, B.S., Jin, H.G., 2022. Cool-roof effects on thermal and wind environments during heat waves: A case modeling study in Seoul, South Korea. Urban Clim. 41, 101044. https://doi.org/10.1016/j.uclim.2021.101044
    Banks, R.F., Baldasano, J.M., 2016. Impact of WRF model PBL schemes on air quality simulations over Catalonia, Spain. Sci. Total Environ. 572, 98–113. https://doi.org/10.1016/j.scitotenv.2016.07.167
    Barlow, J.F., 2014. Progress in observing and modelling the urban boundary layer. Urban Clim. 10, 216–240. https://doi.org/10.1016/j.uclim.2014.03.011
    Basara, J.B., Hall, P.K., Schroeder, A.J., Illston, B.G., Nemunaitis, K.L., 2008. Diurnal cycle of the Oklahoma City urban heat island. J. Geophys. Res. Atmos. 113. https://doi.org/10.1029/2008JD010311
    Bergin, M.S., Russell, A.G., Odman, M.T., Cohan, D.S., Chameides, W.L., 2008. Single-source impact analysis using three-dimensional air quality models. J. Air Waste Manag. Assoc. 58, 1351–1359. https://doi.org/10.3155/1047-3289.58.10.1351
    Blake, D.R., Rowland, F.S., 1995. Urban leakage of liquefied petroleum gas and its impact on Mexico City air quality. Science (80-. ). 269, 953–956. https://doi.org/10.1126/science.269.5226.953
    Bougeault, P., Lacarrere, P., 1989. Parameterization of Orography-Induced Turbulence in a Mesobeta--Scale Model. Mon. Weather Rev. 117, 1872–1890.
    Carter, W.P.L., 1994. Development of ozone reactivity scales for volatile organic compounds. J. Air Waste Manag. Assoc. 44, 881–899. https://doi.org/10.1080/1073161x.1994.10467290
    Cenedese, A., Monti, P., 2003. Interaction between an inland urban heat island and a sea-breeze flow: A laboratory study. J. Appl. Meteorol. 42, 1569–1583. https://doi.org/10.1175/1520-0450(2003)042<1569:IBAIUH>2.0.CO;2
    Chang, C.C., Chen, T.Y., Lin, C.Y., Yuan, C.S., Liu, S.C., 2005. Effects of reactive hydrocarbons on ozone formation in southern Taiwan. Atmos. Environ. 39, 2867–2878. https://doi.org/10.1016/j.atmosenv.2004.12.042
    Chang, C.Y., Faust, E., Hou, X., Lee, P., Kim, H.C., Hedquist, B.C., Liao, K.J., 2016. Investigating ambient ozone formation regimes in neighboring cities of shale plays in the Northeast United States using photochemical modeling and satellite retrievals. Atmos. Environ. 142, 152–170. https://doi.org/10.1016/j.atmosenv.2016.06.058
    Chang, K.L., Petropavlovskikh, I., Cooper, O.R., Schultz, M.G., Wang, T., 2017. Regional trend analysis of surface ozone observations from monitoring networks in eastern North America, Europe and East Asia. Elementa 5, 1–22. https://doi.org/10.1525/elementa.243
    Chen, C.H., Chuang, Y.C., Hsieh, C.C., Lee, C.S., 2019. VOC characteristics and source apportionment at a PAMS site near an industrial complex in central Taiwan. Atmos. Pollut. Res. 10, 1060–1074. https://doi.org/10.1016/j.apr.2019.01.014
    Chen, F., Dudhia, J., 2001. Coupling and advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Weather Rev. 129, 569–585. https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2
    Chen, F., Kusaka, H., Bornstein, R., Ching, J., Grimmond, C.S.B., Grossman-Clarke, S., Loridan, T., Manning, K.W., Martilli, A., Miao, S., Sailor, D., Salamanca, F.P., Taha, H., Tewari, M., Wang, X., Wyszogrodzki, A.A., Zhang, C., 2011. The integrated WRF/urban modelling system: Development, evaluation, and applications to urban environmental problems. Int. J. Climatol. 31, 273–288. https://doi.org/10.1002/joc.2158
    Chen, G., Zhao, L., Mochida, A., 2016. Urban Heat Island simulations in Guangzhou, China, using the coupled WRF/UCM model with a land use map extracted from remote sensing data. Sustainability 8. https://doi.org/10.3390/su8070628
    Chen, K.S., Ho, Y.T., Lai, C.H., Tsai, Y.A., Chen, S.J., 2004. Trends in concentration of ground-Level ozone and meteorological conditions during high ozone episodes in the Kao-Ping Airshed, Taiwan. J. Air Waste Manag. Assoc. 54, 36–48. https://doi.org/10.1080/10473289.2004.10470880
    Chen, P., Quan, J., Zhang, Q., Tie, X., Gao, Y., Li, X., Huang, M., 2013. Measurements of vertical and horizontal distributions of ozone over Beijing from 2007 to 2010. Atmos. Environ. 74, 37–44. https://doi.org/10.1016/j.atmosenv.2013.03.026
    Chen, P., Zhao, X., Wang, O., Shao, M., Xiao, X., Wang, S., Wang, Q., 2022. Characteristics of VOCs and their potentials for O3 and SOA formation in a medium-sized city in Eastern China. Aerosol Air Qual. Res. 22, 2013–2019. https://doi.org/10.4209/aaqr.210239
    Chen, S.P., Liu, W.T., Hsieh, H.C., Wang, J.L., 2021. Taiwan ozone trend in response to reduced domestic precursors and perennial transboundary influence. Environ. Pollut. 289, 117883. https://doi.org/10.1016/j.envpol.2021.117883
    Chen, T., Xue, L., Zheng, P., Zhang, Y., Liu, Y., Sun, J., Han, G., Li, Hongyong, Zhang, X., Li, Y., Li, Hong, Dong, C., Xu, F., Zhang, Q., Wang, W., 2020. Volatile organic compounds and ozone air pollution in an oil production region in northern China. Atmos. Chem. Phys. 20, 7069–7086. https://doi.org/10.5194/acp-20-7069-2020
    Cheng, F.Y., Hsu, Y.C., Lin, P.L., Lin, T.H., 2013. Investigation of the effects of different land use and land cover patterns on mesoscale meteorological simulations in the Taiwan area. J. Appl. Meteorol. Climatol. 52, 570–587. https://doi.org/10.1175/JAMC-D-12-0109.1
    Cheng, F.Y., Jian, S.P., Yang, Z.M., Yen, M.C., Tsuang, B.J., 2015. Influence of regional climate change on meteorological characteristics and their subsequent effect on ozone dispersion in Taiwan. Atmos. Environ. 103, 66–81. https://doi.org/10.1016/j.atmosenv.2014.12.020
    Cheng, W.L., 2002. Ozone distribution in coastal central Taiwan under sea-breeze conditions. Atmos. Environ. 36, 3445–3459. https://doi.org/10.1016/S1352-2310(02)00307-2
    Chi, X., Liu, C., Xie, Z., Fan, G., Wang, Y., He, P., Fan, S., Hong, Q., Wang, Z., Yu, X., Yue, F., Duan, J., Zhang, P., Liu, J., 2018. Observations of ozone vertical profiles and corresponding precursors in the low troposphere in Beijing, China. Atmos. Res. 213, 224–235. https://doi.org/10.1016/j.atmosres.2018.06.012
    Chou, C.C.K., Liu, S.C., Lin, C.Y., Shiu, C.J., Chang, K.H., 2006. The trend of surface ozone in Taipei, Taiwan, and its causes: Implications for ozone control strategies. Atmos. Environ. 40, 3898–3908. https://doi.org/10.1016/j.atmosenv.2006.02.018
    Chou, M.-D., Suarez, M.J., 1999. A shortwave radiation parameterization for atmospheric studies. NASA Tech 15.
    Chow, W.T.L., Roth, M., 2006. Temporal dynamics of the urban heat island of Singapore. Int. J. Climatol. 26, 2243–2260. https://doi.org/10.1002/joc
    Chuang, M.T., Chiang, P.C., Chan, C.C., Wang, C.F., Chang, E.E., Lee, C. Te, 2008. The effects of synoptical weather pattern and complex terrain on the formation of aerosol events in the Greater Taipei area. Sci. Total Environ. Total Environ. 399, 128–146. https://doi.org/10.1016/j.scitotenv.2008.01.051
    Cohan, D.S., Hakami, A., Hu, Y., Russell, A.G., 2005. Nonlinear response of ozone to emissions: Source apportionment and sensitivity analysis. Environ. Sci. Technol. 39, 6739–6748. https://doi.org/10.1021/es048664m
    Daellenbach, K.R., Stefenelli, G., Bozzetti, C., Vlachou, A., Fermo, P., Gonzalez, R., Piazzalunga, A., Colombi, C., Canonaco, F., Hueglin, C., Kasper-Giebl, A., Jaffrezo, J.L., Bianchi, F., Slowik, J.G., Baltensperger, U., El-Haddad, I., Prévôt, A.S.H., 2017. Long-term chemical analysis and organic aerosol source apportionment at nine sites in central Europe: Source identification and uncertainty assessment. Atmos. Chem. Phys. 17, 13265–13282. https://doi.org/10.5194/acp-17-13265-2017
    Dai, P., Ge, Y., Lin, Y., Su, S., Liang, B., 2013. Investigation on characteristics of exhaust and evaporative emissions from passenger cars fueled with gasoline/methanol blends. Fuel 113, 10–16. https://doi.org/10.1016/j.fuel.2013.05.038
    Dayan, U., Koch, J., 1996. Ozone concentration profiles in the Los Angeles basin - A possible similarity in the build-up mechanism of inland surface ozone in Israel. J. Appl. Meteorol. 35, 1085–1090.
    Ding, A.J., Wang, T., Thouret, V., Cammas, J.P., Nédélec, P., 2008. Tropospheric ozone climatology over Beijing: Analysis of aircraft data from the MOZAIC program. Atmos. Chem. Phys. 8, 1–13. https://doi.org/10.5194/acp-8-1-2008
    Dunker, A.M., Koo, B., Yarwood, G., 2015. Source apportionment of the anthropogenic increment to ozone, formaldehyde, and nitrogen dioxide by the path-integral method in a 3D model. Environ. Sci. Technol. 49, 6751–6759. https://doi.org/10.1021/acs.est.5b00467
    Dunker, A.M., Yarwood, G., Ortmann, J.P., Wilson, G.M., 2002a. The decoupled direct method for sensitivity analysis in a three-dimensional air quality model - Implementation, accuracy, and efficiency. Environ. Sci. Technol. 36, 2965–2976. https://doi.org/10.1021/es0112691
    Dunker, A.M., Yarwood, G., Ortmann, J.P., Wilson, G.M., 2002b. Comparison of source apportionment and source sensitivity of ozone in a three-dimensional air quality model. Environ. Sci. Technol. 36, 2953–2964. https://doi.org/10.1021/es011418f
    Dy, C.Y., Fung, J.C.H., Pleim, J., 2019. Momentum Drag Effect Over Urbanized Areas in the ACM2 PBL Component of the WRF model. J. Geophys. Res. Atmos. 124, 4460–4476. https://doi.org/10.1029/2018JD029333
    Fallmann, J., Forkel, R., Emeis, S., 2016. Secondary effects of urban heat island mitigation measures on air quality. Atmos. Environ. 125, 199–211. https://doi.org/10.1016/j.atmosenv.2015.10.094
    Fan, M.Y., Zhang, Y.L., Lin, Y.C., Cao, F., Sun, Y., Qiu, Y., Xing, G., Dao, X., Fu, P., 2021. Specific sources of health risks induced by metallic elements in PM2.5 during the wintertime in Beijing, China. Atmos. Environ. 246, 118112. https://doi.org/10.1016/j.atmosenv.2020.118112
    Fast, J.D., Zhong, S., 1998. Meteorological factors associated with inhomogeneous ozone concentrations within the Mexico City basin. J. Geophys. Res. Atmos. 103, 18927–18946. https://doi.org/10.1029/98JD01725
    Finardi, S., Agrillo, G., Baraldi, R., Calori, G., Carlucci, P., Ciccioli, P., D’Allura, A., Gasbarra, D., Gioli, B., Magliulo, V., Radice, P., Toscano, P., Zaldei, A., 2018. Atmospheric dynamics and ozone cycle during sea breeze in a Mediterranean complex urbanized coastal site. J. Appl. Meteorol. Climatol. 57, 1083–1099. https://doi.org/10.1175/JAMC-D-17-0117.1
    Folberth, G.A., Butler, T.M., Collins, W.J., Rumbold, S.T., 2015. Megacities and climate change - A brief overview. Environ. Pollut. 203, 235–242. https://doi.org/10.1016/j.envpol.2014.09.004
    Fountoukis, C., Megaritis, A.G., Skyllakou, K., Charalampidis, P.E., Pilinis, C., Denier Van Der Gon, H.A.C., Crippa, M., Canonaco, F., Mohr, C., Prévôt, A.S.H., Allan, J.D., Poulain, L., Petäjä, T., Tiitta, P., Carbone, S., Kiendler-Scharr, A., Nemitz, E., O’Dowd, C., Swietlicki, E., Pandis, S.N., 2014. Organic aerosol concentration and composition over Europe: Insights from comparison of regional model predictions with aerosol mass spectrometer factor analysis. Atmos. Chem. Phys. 14, 9061–9076. https://doi.org/10.5194/acp-14-9061-2014
    Freitas, E.D., Rozoff, C.M., Cotton, W.R., Silva Dias, P.L., 2007. Interactions of an urban heat island and sea-breeze circulations during winter over the metropolitan area of São Paulo, Brazil. Boundary-Layer Meteorol. 122, 43–65. https://doi.org/10.1007/s10546-006-9091-3
    Gallus, W.A., Bresch, J.F., 2006. Comparison of impacts of WRF dynamic core, physics package, and initial conditions on warm season rainfall forecasts. Mon. Weather Rev. 134, 2632–2641. https://doi.org/10.1175/MWR3198.1
    Ganbat, G., Baik, J.J., Ryu, Y.H., 2015. A numerical study of the interactions of urban breeze circulation with mountain slope winds. Theor. Appl. Climatol. 120, 123–135. https://doi.org/10.1007/s00704-014-1162-7
    Gery, W., Whitten, G.Z., Killus, P., Dodge, C., Carolina, N., 1989. A photochemical kinetics mechanism for urban and regional scale computer modeling. J. Geophys. Res. 94, 12925–12956.
    Giannaros, C., Nenes, A., Giannaros, T.M., Kourtidis, K., Melas, D., 2018. A comprehensive approach for the simulation of the Urban Heat Island effect with the WRF/SLUCM modeling system: The case of Athens (Greece). Atmos. Res. 201, 86–101. https://doi.org/10.1016/j.atmosres.2017.10.015
    Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P.I., Geron, C., 2006. Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys. 6, 3181–3210. https://doi.org/10.5194/acp-6-3181-2006
    Hakami, A., Harley, R.A., Milford, J.B., Odman, M.T., Russell, A.G., 2004. Regional, three-dimensional assessment of the ozone formation potential of organic compounds. Atmos. Environ. 38, 121–134. https://doi.org/10.1016/j.atmosenv.2003.09.049
    Hakami, Amir, Odman, M.T., Russell, A.G., 2004. Nonlinearity in atmospheric response: A direct sensitivity analysis approach. J. Geophys. Res. D Atmos. 109, 1–12. https://doi.org/10.1029/2003JD004502
    Hakami, A., Seinfeld, J.H., Chai, T., Tang, Y., Carmichael, G.R., Sandu, A., 2006. Adjoint sensitivity analysis of ozone nonattainment over the continental United States. Environ. Sci. Technol. 40, 3855–3864. https://doi.org/10.1021/es052135g
    Han, Z.S., González-Cruz, J.E., Liu, H.N., Melecio-Vázquez, D., Gamarro, H., Wu, Y.H., Moshary, F., Bornstein, R., 2022. Observed sea breeze life cycle in and around NYC: Impacts on UHI and ozone patterns. Urban Clim. 42. https://doi.org/10.1016/j.uclim.2022.101109
    Hidalgo, J., Pigeon, G., Masson, V., 2008. Urban-breeze circulation during the CAPITOUL experiment: Observational data analysis approach. Meteorol. Atmos. Phys. 102, 223–241. https://doi.org/10.1007/s00703-008-0329-0
    Hou, A., Ni, G., Yang, H., Lei, Z., 2013. Numerical analysis on the contribution of urbanization to wind stilling: An example over the greater Beijing metropolitan area. J. Appl. Meteorol. Climatol. 52, 1105–1115. https://doi.org/10.1175/JAMC-D-12-013.1
    Hsu, C.H., Cheng, F.Y., 2019. Synoptic weather patterns and associated air pollution in Taiwan. Aerosol Air Qual. Res. 19, 1139–1151. https://doi.org/10.4209/aaqr.2018.09.0348
    Hu, J., Li, Y., Zhao, T., Liu, J., Hu, X.M., Liu, D., Jiang, Y., Xu, J., Chang, L., 2018. An important mechanism of regional O3 transport for summer smog over the Yangtze River Delta in eastern China. Atmos. Chem. Phys. 18, 16239–16251. https://doi.org/10.5194/acp-18-16239-2018
    Hu, X.M., Xue, M., 2016. Influence of synoptic sea-breeze fronts on the urban heat island intensity in Dallas-Fort Worth, Texas. Mon. Weather Rev. 144, 1487–1507. https://doi.org/10.1175/MWR-D-15-0201.1
    Huang, M., Gao, Z., Miao, S., Chen, F., 2018. Sensitivity of urban boundary layer simulation to urban canopy models and PBL schemes in Beijing. Meteorol. Atmos. Phys. 131, 1235–1248. https://doi.org/10.1007/s00703-018-0634-1
    Huang, Y.S., Hsieh, C.C., 2020. VOC characteristics and sources at nine photochemical assessment monitoring stations in western Taiwan. Atmos. Environ. 240, 117741. https://doi.org/10.1016/j.atmosenv.2020.117741
    Hui, L., Liu, X., Tan, Q., Feng, M., An, J., Qu, Y., Zhang, Y., Jiang, M., 2018. Characteristics, source apportionment and contribution of VOCs to ozone formation in Wuhan, Central China. Atmos. Environ. 192, 55–71. https://doi.org/10.1016/j.atmosenv.2018.08.042
    Huszar, P., Belda, M., Karlický, J., Bardachova, T., Halenka, T., Pisoft, P., 2018. Impact of urban canopy meteorological forcing on aerosol concentrations. Atmos. Chem. Phys. 18, 14059–14078. https://doi.org/10.5194/acp-18-14059-2018
    Janjic, Z.I., 1994. The Step-Mountain Eta Coordinate Model: Further Developments of the Convection, Viscous Sublayer, and Turbulence Closure Schemes. Mon. Weather Rev. 122, 927–944.
    Jeon, W.B., Lee, S.H., Lee, H., Park, C., Kim, D.H., Park, S.Y., 2014. A study on high ozone formation mechanism associated with change of NOx/VOCs ratio at a rural area in the Korean Peninsula. Atmos. Environ. 89, 10–21. https://doi.org/10.1016/j.atmosenv.2014.02.005
    Ji, X., Xu, K., Liao, D., Chen, G., Liu, T., Hong, Y., Dong, S., Choi, S.D., Chen, J., 2022. Spatial-temporal Characteristics and Source Apportionment of Ambient VOCs in Southeast Mountain Area of China. Aerosol Air Qual. Res. 22, 1–15. https://doi.org/10.4209/aaqr.220016
    Jia, L.W., Shen, M.Q., Wang, J., Lin, M.Q., 2005. Influence of ethanol-gasoline blended fuel on emission characteristics from a four-stroke motorcycle engine. J. Hazard. Mater. 123, 29–34. https://doi.org/10.1016/j.jhazmat.2005.03.046
    Kanda, M., 2007. Progress in urban meteorology: A review. J. Meteorol. Soc. Japan 85 B, 363–383. https://doi.org/10.2151/jmsj.85B.363
    Karthik L, B., Sujith, B., Rizwan A, S., Sehgal, M., 2017. Characteristics of the Ozone Pollution and its Health Effects in India. Int. J. Med. Public Heal. 7, 56–60. https://doi.org/10.5530/ijmedph.2017.1.10
    Kawai, T., Kanda, M., 2010. Urban energy balance obtained from the comprehensive outdoor scale model experiment. Part I: Basic features of the surface energy balance. J. Appl. Meteorol. Climatol. 49, 1341–1359. https://doi.org/10.1175/2010JAMC1992.1
    Kim, G., Lee, J., Lee, M.I., Kim, D., 2021. Impacts of urbanization on atmospheric circulation and aerosol transport in a coastal environment simulated by the WRF-Chem coupled with urban canopy model. Atmos. Environ. 249, 118253. https://doi.org/10.1016/j.atmosenv.2021.118253
    Kim, Y., Sartelet, K., Raut, J.C., Chazette, P., 2013. Evaluation of the Weather Research and Forecast/Urban Model Over Greater Paris. Boundary-Layer Meteorol. 149, 105–132. https://doi.org/10.1007/s10546-013-9838-6
    Kim, Y.H., Baik, J.J., 2004. Daily maximum urban heat island intensity in large cities of Korea. Theor. Appl. Climatol. 79, 151–164. https://doi.org/10.1007/s00704-004-0070-7
    Klein, P.M., Hu, X.M., Xue, M., 2014. Impacts of mixing processes in nocturnal atmospheric boundary layer on urban ozone concentrations. Boundary-Layer Meteorol. 150, 107–130. https://doi.org/10.1007/s10546-013-9864-4
    Kondo, J., Watanabe, T., 1992. Studies on the bulk transfer coefficients over a vegetated surface with a multilayer energy budget model. J. Atmos. Sci. 49, 2183–2199.
    Koplitz, S., Simon, H., Henderson, B., Liljegren, J., Tonnesen, G., Whitehill, A., Wells, B., 2021. Changes in ozone chemical sensitivity in the United States from 2007 to 2016. ACS Environ. Au. https://doi.org/10.1021/acsenvironau.1c00029
    Kuo, Y.M., Chiu, C.H., Yu, H.L., 2014. Influences of ambient air pollutants and meteorological conditions on ozone variations in Kaohsiung, Taiwan. Stoch. Environ. Res. Risk Assess. 29, 1037–1050. https://doi.org/10.1007/s00477-014-0968-2
    Kusaka, H., Hiroaki, K., Kikegawa, Y., Kimura, F., 2001. A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models. Boundary-Layer Meteorol. 101, 329–358.
    Kusaka, H., Kimura, F., 2004. Coupling a single-layer urban canopy model with a simple atmospheric model: Impact on urban heat island simulation for an idealized case. J. Meteorol. Soc. Japan 82, 67–80. https://doi.org/10.2151/jmsj.82.67
    Kwok, R.H.F., Baker, K.R., Napelenok, S.L., Tonnesen, G.S., 2015. Photochemical grid model implementation and application of VOC, NOx, and O3 source apportionment. Geosci. Model Dev. 8, 99–114. https://doi.org/10.5194/gmd-8-99-2015
    Kwok, Y.T., Schoetter, R., de Munck, C., Lau, K.K.-L., Wong, M.S., Ng, E., 2021. High-resolution mesoscale simulation of the microclimatic effects of urban development in the past, present, and future Hong Kong. Urban Clim. 37, 100850. https://doi.org/10.1016/j.uclim.2021.100850
    Lai, L.W., Cheng, W.L., 2009. Air quality influenced by urban heat island coupled with synoptic weather patterns. Sci. Total Environ. 407, 2724–2733. https://doi.org/10.1016/j.scitotenv.2008.12.002
    Laughner, J., Cohen, R.C., 2019. Direct observation of changing NOx lifetime in North American cities. Science (80-. ). 366, 723–727.
    Lee, Y.C., Wenig, M., Yang, X., 2009. The emergence of urban ozone episodes in autumn and air temperature rise in Hong Kong. Air Qual. Atmos. Heal. 2, 111–121. https://doi.org/10.1007/s11869-009-0038-y
    Lei, W., De Foy, B., Zavala, M., Volkamer, R., Molina, L.T., 2007. Characterizing ozone production in the Mexico City Metropolitan Area: A case study using a chemical transport model. Atmos. Chem. Phys. 7, 1347–1366. https://doi.org/10.5194/acp-7-1347-2007
    Li, D., Bou-Zeid, E., Oppenheimer, M., 2014. The effectiveness of cool and green roofs as urban heat island mitigation strategies. Environ. Res. Lett. 9. https://doi.org/10.1088/1748-9326/9/5/055002
    Li, G., Zhang, R., Fan, J., Tie, X., 2007. Impacts of biogenic emissions on photochemical ozone production in Houston, Texas. J. Geophys. Res. Atmos. 112. https://doi.org/10.1029/2006JD007924
    Li, J., Hao, X., Liao, H., Hu, J., Chen, H., 2021. Meteorological Impact on Winter PM2.5 Pollution in Delhi: Present and Future Projection Under a Warming Climate. Geophys. Res. Lett. 48, 1–10. https://doi.org/10.1029/2021GL093722
    Li, J., Zhai, C., Yu, J., Liu, R., Li, Y., Zeng, L., Xie, S., 2018. Spatiotemporal variations of ambient volatile organic compounds and their sources in Chongqing, a mountainous megacity in China. Sci. Total Environ. 627, 1442–1452. https://doi.org/10.1016/j.scitotenv.2018.02.010
    Li, M., Song, Y., Mao, Z., Liu, M., Huang, X., 2016. Impacts of thermal circulations induced by urbanization on ozone formation in the Pearl River Delta region, China. Atmos. Environ. 127, 382–392. https://doi.org/10.1016/j.atmosenv.2015.10.075
    Li, M., Wang, T., Xie, M., Zhuang, B., Li, S., Han, Y., Cheng, N., 2017. Modeling of urban heat island and its impacts on thermal circulations in the Beijing–Tianjin–Hebei region, China. Theor. Appl. Climatol. 128, 999–1013. https://doi.org/10.1007/s00704-016-1903-x
    Li, X.X., Norford, L.K., 2016. Evaluation of cool roof and vegetations in mitigating urban heat island in a tropical city, Singapore. Urban Clim. 16, 59–74. https://doi.org/10.1016/j.uclim.2015.12.002
    Li, Y., Cheng, M., Guo, Z., He, Y., Zhang, X., Cui, X., Chen, S., 2020. Increase in surface ozone over Beijing-Tianjin-Hebei and the surrounding areas of china inferred from satellite retrievals, 2005-2018. Aerosol Air Qual. Res. 20, 2170–2184. https://doi.org/10.4209/aaqr.2019.11.0603
    Li, Y., Lau, A.K.H., Fung, J.C.H., Ma, H., Tse, Y., 2013a. Systematic evaluation of ozone control policies using an Ozone Source Apportionment method. Atmos. Environ. 76, 136–146. https://doi.org/10.1016/j.atmosenv.2013.02.033
    Li, Y., Lau, A.K.H., Fung, J.C.H., Zheng, J., Liu, S., 2013b. Importance of NOx control for peak ozone reduction in the Pearl River Delta region. J. Geophys. Res. Atmos. 118, 9428–9443. https://doi.org/10.1002/jgrd.50659
    Li, Z., Li, W., Zhou, R., Miao, X., Lu, J., Wang, Z., Yang, Z., Wu, J., 2021. Process-based VOCs source profiles and contributions to ozone formation in typical organic solvent-used industries in Hangzhou. Aerosol Air Qual. Res. 21. https://doi.org/10.4209/aaqr.210008
    Lin, C.Y., Chen, F., Huang, J.C., Chen, W.C., Liou, Y.A., Chen, W.N., Liu, S.C., 2008a. Urban heat island effect and its impact on boundary layer development and land-sea circulation over northern Taiwan. Atmos. Environ. 42, 5635–5649. https://doi.org/10.1016/j.atmosenv.2008.03.015
    Lin, C.Y., Chen, W.C., Chang, P.L., Sheng, Y.F., 2011. Impact of the urban heat island effect on precipitation over a complex geographic environment in northern Taiwan. J. Appl. Meteorol. Climatol. 50, 339–353. https://doi.org/10.1175/2010JAMC2504.1
    Lin, C.Y., Chen, W.C., Liu, S.C., Liou, Y.A., Liu, G.R., Lin, T.H., 2008b. Numerical study of the impact of urbanization on the precipitation over Taiwan. Atmos. Environ. 42, 2934–2947. https://doi.org/10.1016/j.atmosenv.2007.12.054
    Lin, C.Y., Liu, S.C., Chou, C.C.K., Huang, S.J., Liu, C.M., Kuo, C.H., Young, C.Y., 2005. Long-range transport of aerosols and their impact on the air quality of Taiwan. Atmos. Environ. 39, 6066–6076. https://doi.org/10.1016/j.atmosenv.2005.06.046
    Lin, C.Y., Su, C.J., Kusaka, H., Akimoto, Y., Sheng, Y.F., Huang, J.C., Hsu, H.H., 2016. Impact of an improved WRF urban canopy model on diurnal air temperature simulation over northern Taiwan. Atmos. Chem. Phys. 16, 1809–1822. https://doi.org/10.5194/acp-16-1809-2016
    Lin, C.Y., Wang, Z., Chou, C.C.K., Chang, C.C., Liu, S.C., 2007. A numerical study of an autumn high ozone episode over southwestern Taiwan. Atmos. Environ. 41, 3684–3701. https://doi.org/10.1016/j.atmosenv.2006.12.050
    Ling, Z.H., Guo, H., 2014. Contribution of VOC sources to photochemical ozone formation and its control policy implication in Hong Kong. Environ. Sci. Policy 38, 180–191. https://doi.org/10.1016/j.envsci.2013.12.004
    Liu, X., Wang, N., Lyu, X., Zeren, Y., Jiang, F., Wang, X., Zou, S., Ling, Z., Guo, H., 2021. Photochemistry of ozone pollution in autumn in Pearl River Estuary, South China. Sci. Total Environ. 754, 141812. https://doi.org/10.1016/j.scitotenv.2020.141812
    Liu, Y., Chen, F., Warner, T., Basara, J., 2006. Verification of a mesoscale data-assimilation and forecasting system for the Oklahoma City area during the joint urban 2003 field project. J. Appl. Meteorol. Climatol. 45, 912–929. https://doi.org/10.1175/JAM2383.1
    Liu, Y., Shao, M., Fu, L., Lu, S., Zeng, L., Tang, D., 2008. Source profiles of volatile organic compounds (VOCs) measured in China: Part I. Atmos. Environ. 42, 6247–6260. https://doi.org/10.1016/j.atmosenv.2008.01.070
    Liu, Z., Wang, Y., Gu, D., Zhao, C., Huey, L.G., Stickel, R., Liao, J., Shao, M., Zhu, T., Zeng, L., Amoroso, A., Costabile, F., Chang, C.C., Liu, S.C., 2012. Summertime photochemistry during CAREBeijing-2007: RO x budgets and O3 formation. Atmos. Chem. Phys. 12, 7737–7752. https://doi.org/10.5194/acp-12-7737-2012
    Louis, J.F., 1979. A parametric model of vertical eddy fluxes in the atmosphere. Boundary-Layer Meteorol. 17, 187–202. https://doi.org/10.1007/BF00117978
    Lu, D., Tian, H., Zhou, G., Ge, H., 2008. Regional mapping of human settlements in southeastern China with multisensor remotely sensed data. Remote Sens. Environ. 112, 3668–3679. https://doi.org/10.1016/j.rse.2008.05.009
    Lu, R., Turco, R.P., 1996. Ozone distributions over the Los Angeles basin: Three-dimensional simulations with the smog model. Atmos. Environ. 30, 4155–4176. https://doi.org/10.1016/1352-2310(96)00153-7
    Lu, X., Zhang, L., Shen, L., 2019. Meteorology and climate influences on tropospheric ozone: a review of natural sources, chemistry, and transport patterns. Curr. Pollut. Reports 5, 238–260. https://doi.org/10.1007/s40726-019-00118-3
    Luecken, D.J., Napelenok, S.L., Strum, M., Scheffe, R., Phillips, S., 2018. Sensitivity of ambient atmospheric formaldehyde and ozone to precursor species and source types across the United States. Environ. Sci. Technol. 52, 4668–4675. https://doi.org/10.1021/acs.est.7b05509
    Luecken, D.J., Yarwood, G., Hutzell, W.T., 2019. Multipollutant modeling of ozone, reactive nitrogen and HAPs across the continental US with CMAQ-CB6. Atmos. Environ. 201, 62–72. https://doi.org/10.1016/j.hal.2017.06.001.Submit
    Ma, T., Xu, T., Huang, L., Zhou, A., 2018. Human settlement composite index (HSCI) derived from nighttime luminosity associated with imperviousness and vegetation indexes. Remote Sens. 10. https://doi.org/10.3390/rs10030455
    Makar, P.A., Zhang, J., Gong, W., Stroud, C., Sills, D., Hayden, K.L., Brook, J., Levy, I., Mihele, C., Moran, M.D., Tarasick, D.W., He, H., Plummer, D., 2010. Mass tracking for chemical analysis: The causes of ozone formation in southern Ontario during BAQS-Met 2007. Atmos. Chem. Phys. 10, 11151–11173. https://doi.org/10.5194/acp-10-11151-2010
    Mao, J., Ren, X., Chen, S., Brune, W.H., Chen, Z., Martinez, M., Harder, H., Lefer, B., Rappenglück, B., Flynn, J., Leuchner, M., 2010. Atmospheric oxidation capacity in the summer of Houston 2006: Comparison with summer measurements in other metropolitan studies. Atmos. Environ. 44, 4107–4115. https://doi.org/10.1016/j.atmosenv.2009.01.013
    Martilli, A., Clappier, A., Rotach, M.W., 2002. An urban surface exchange parameterisation for mesoscale models. Boundary-Layer Meteorol. 104, 261–304. https://doi.org/10.1023/A:1016099921195
    Martinelli, A., Kolokotsa, D.D., Fiorito, F., 2020. Urban heat island in Mediterranean coastal cities: The case of Bari (Italy). Climate 8. https://doi.org/10.3390/CLI8060079
    Martins, D.K., Stauffer, R.M., Thompson, A.M., Knepp, T.N., Pippin, M., 2012. Surface ozone at a coastal suburban site in 2009 and 2010: Relationships to chemical and meteorological processes. J. Geophys. Res. Atmos. 117, 1–16. https://doi.org/10.1029/2011JD016828
    Masson, V., 2000. A physically-based scheme for the urban energy budget in atmospheric models. Boundary-Layer Meteorol. 94, 357–397. https://doi.org/10.1023/A:1002463829265
    Mazzuca, G.M., Ren, X., Loughner, C.P., Estes, M., Crawford, J.H., Pickering, K.E., Weinheimer, A.J., Dickerson, R.R., 2016. Ozone production and its sensitivity to NOx and VOCs: Results from the DISCOVER-AQ field experiment, Houston 2013. Atmos. Chem. Phys. 16, 14463–14474. https://doi.org/10.5194/acp-16-14463-2016
    Mills, G.M., 1993. Simulation of the energy budget of an urban canyon-II. Comparison of model results with measurements. Atmos. Environ. 27, 171–181. https://doi.org/10.1016/0957-1272(93)90003-O
    Minoura, H., Chow, J.C., Watson, J.G., Fu, J.S., Dong, X., Yang, C.E., 2016. Vertical circulation of atmospheric pollutants near mountains during a Southern California ozone episode. Aerosol Air Qual. Res. 16, 2396–2404. https://doi.org/10.4209/aaqr.2015.09.0554
    Mo, Z., Shao, M., Lu, S., Qu, H., Zhou, M., Sun, J., Gou, B., 2015. Process-specific emission characteristics of volatile organic compounds (VOCs) from petrochemical facilities in the Yangtze River Delta, China. Sci. Total Environ. 533, 422–431. https://doi.org/10.1016/j.scitotenv.2015.06.089
    Mohajerani, A., Bakaric, J., Jeffrey-Bailey, T., 2017. The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete. J. Environ. Manage. 197, 522–538. https://doi.org/10.1016/j.jenvman.2017.03.095
    Mohammed, A., Pignatta, G., Topriska, E., Santamouris, M., 2020. Canopy urban heat island and its association with climate conditions in Dubai, UAE. Climate 8. https://doi.org/10.3390/CLI8060081
    Mughal, M.O., Li, X.X., Yin, T., Martilli, A., Brousse, O., Dissegna, M.A., Norford, L.K., 2019. High-resolution, nultilayer modeling of Singapore’s urban climate incorporating local climate zones. J. Geophys. Res. Atmos. 124, 7764–7785. https://doi.org/10.1029/2018JD029796
    Nogueira, F.G.E., Lopes, J.H., Silva, A.C., Lago, R.M., Fabris, J.D., Oliveira, L.C.A., 2011. Catalysts based on clay and iron oxide for oxidation of toluene. Appl. Clay Sci. 51, 385–389. https://doi.org/10.1016/j.clay.2010.12.007
    Ohara, T., Akimoto, H., Kurokawa, J., Horii, N., Yamaji, K., Yan, X., Hayasaka, T., 2007. An Asian emission inventory of anthropogenic emission sources for the period 1980-2020. Atmos. Chem. Phys. 7, 4419–4444. https://doi.org/10.5194/acp-7-4419-2007
    Oke, T.R., 1982. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 108, 1–24. https://doi.org/10.1002/qj.49710845502
    Oke, T.R., 1976. The distinction between canopy and boundary-layer urban heat Islands. Atmosphere (Basel). 14, 268–277. https://doi.org/10.1080/00046973.1976.9648422
    Ooi, M.C.G., Chan, A., Subramaniam, K., Morris, K.I., Oozeer, M.Y., 2017. Interaction of urban heating and local winds during the calm intermonsoon seasons in the tropics. J. Geophys. Res. Atmos. 122, 11,499-11,523. https://doi.org/10.1002/2017JD026690
    Pallavi, Sinha, B., Sinha, V., 2019. Source apportionment of volatile organic compounds in the northwest Indo-Gangetic Plain using a positive matrix factorization model. Atmos. Chem. Phys. 19, 15467–15482. https://doi.org/10.5194/acp-19-15467-2019
    Pinthong, N., Thepanondh, S., Kondo, A., 2022. Source identification of VOCs and their environmental health risk in a petrochemical industrial area. Aerosol Air Qual. Res. 22, 1–18. https://doi.org/10.4209/aaqr.210064
    Pleim, J.E., 2007. A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: Model description and testing. J. Appl. Meteorol. Climatol. 46, 1383–1395. https://doi.org/10.1175/JAM2539.1
    Ribeiro, F.N.D., Oliveira, A.P. d., Soares, J., Miranda, R.M. d., Barlage, M., Chen, F., 2018. Effect of sea breeze propagation on the urban boundary layer of the metropolitan region of Sao Paulo, Brazil. Atmos. Res. 214, 174–188. https://doi.org/10.1016/j.atmosres.2018.07.015
    Rossabi, S., Helmig, D., 2018. Changes in atmospheric butanes and pentanes and their isomeric ratios in the Continental United States. J. Geophys. Res. Atmos. 123, 3772–3790. https://doi.org/10.1002/2017JD027709
    Ryu, Y.H., Baik, J.J., 2013. Daytime local circulations and their interactions in the Seoul metropolitan area. J. Appl. Meteorol. Climatol. 52, 784–801. https://doi.org/10.1175/JAMC-D-12-0157.1
    Ryu, Y.H., Baik, J.J., 2012. Quantitative analysis of factors contributing to urban heat island intensity. J. Appl. Meteorol. Climatol. 51, 842–854. https://doi.org/10.1175/JAMC-D-11-098.1
    Ryu, Y. H., Baik, J.J., Kwak, K.H., Kim, S., Moon, N., 2013. Impacts of urban land-surface forcing on ozone air quality in the Seoul metropolitan area. Atmos. Chem. Phys. 13, 2177–2194. https://doi.org/10.5194/acp-13-2177-2013
    Ryu, Young Hee, Baik, J.J., Lee, S.H., 2013. Effects of anthropogenic heat on ozone air quality in a megacity. Atmos. Environ. 80, 20–30. https://doi.org/10.1016/j.atmosenv.2013.07.053
    Saitoh, T.S., Shimada, T., Hoshi, H., 1996. Modeling and simulation of the Tokyo urban heat island. Atmos. Environ. 30, 3431–3442. https://doi.org/10.1016/1352-2310(95)00489-0
    Salamanca, F., Krpo, A., Martilli, A., Clappier, A., 2010. A new building energy model coupled with an urban canopy parameterization for urban climate simulations-part I. formulation, verification, and sensitivity analysis of the model. Theor. Appl. Climatol. 99, 331–344. https://doi.org/10.1007/s00704-009-0142-9
    Sarrat, C., Lemonsu, A., Masson, V., Guedalia, D., 2006. Impact of urban heat island on regional atmospheric pollution. Atmos. Environ. 40, 1743–1758. https://doi.org/10.1016/j.atmosenv.2005.11.037
    Sasaki, Y., Matsuo, K., Yokoyama, M., Sasaki, M., Tanaka, T., Sadohara, S., 2018. Sea breeze effect mapping for mitigating summer urban warming: For making urban environmental climate map of Yokohama and its surrounding area. Urban Clim. 24, 529–550. https://doi.org/10.1016/j.uclim.2017.07.003
    Shen, Lidu, Sun, J., Yuan, R., 2018. Idealized large-eddy simulation study of interaction between urban heat island and sea breeze circulations. Atmos. Res. 214, 338–347. https://doi.org/10.1016/j.atmosres.2018.08.010
    Shen, Longjiao, Xiang, P., Liang, S., Chen, W., Wang, M., Lu, S., Wang, Z., 2018. Sources profiles of volatile organic compounds (VOCs) measured in a typical industrial process in Wuhan, central China. Atmosphere (Basel). 9. https://doi.org/10.3390/atmos9080297
    Shi, L., Zhu, A., Huang, L., Yaluk, E., Gu, Y., Wang, Y., Wang, S., Chan, A., Li, L., 2021. Impact of the planetary boundary layer on air quality simulations over the Yangtze River Delta region, China. Atmos. Environ. 263. https://doi.org/10.1016/j.atmosenv.2021.118685
    Shimadera, H., Hayami, H., Chatani, S., Morikawa, T., Morino, Y., Mori, Y., Yamaji, K., Nakatsuka, S., Ohara, T., 2018. Urban air quality model inter-comparison study (UMICS) for improvement of PM2.5 simulation in greater Tokyo Area of Japan. Asian J. Atmos. Environ. 12, 139–152. https://doi.org/10.5572/ajae.2018.12.2.139
    Shiu, C.J., Liu, S.C., Chen, J.P., 2009. Diurnally asymmetric trends of temperature, humidity, and precipitation in Taiwan. J. Clim. 22, 5635–5649. https://doi.org/10.1175/2009JCLI2514.1
    Sillman, 1995. SillmanIndicators95.pdf. J. Geophys. Res. 100, 1–14.
    Sillman, S., 1999. The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments. Atmos. Environ. 33, 1821–1845. https://doi.org/10.1016/S1474-8177(02)80015-8
    Song, C., Liu, B., Dai, Q., Li, H., Mao, H., 2019. Temperature dependence and source apportionment of volatile organic compounds (VOCs) at an urban site on the north China plain. Atmos. Environ. 207, 167–181. https://doi.org/10.1016/j.atmosenv.2019.03.030
    Souri, A., Nowlan, C., González Abad, G., Zhu, L., Blake, D., Fried, A., Weinheimer, A., Woo, J.-H., Zhang, Q., Chan Miller, C., Liu, X., Chance, K., 2020. An inversion of NOx and NMVOC emissions using satellite observations during the KORUS-AQ Campaign and implications for surface ozone over East Asia. Atmos. Chem. Phys. Discuss. 35, 1–39. https://doi.org/10.5194/acp-2020-220
    Stutz, J., Alicke, B., Ackermann, R., Geyer, A., White, A., Williams, E., 2004. Vertical profiles of NO3, N2O5, O3, and NOx in the nocturnal boundary layer: 1. Observations during the Texas Air Quality Study 2000. J. Geophys. Res. Atmos. 109, 1–15. https://doi.org/10.1029/2003JD004209
    Su, W., Liu, C., Hu, Q., Fan, G., Xie, Z., Huang, X., Zhang, T., Chen, Z., Dong, Y., Ji, X., Liu, H., Wang, Z., Liu, J., 2017. Characterization of ozone in the lower troposphere during the 2016 G20 conference in Hangzhou. Sci. Rep. 7, 1–11. https://doi.org/10.1038/s41598-017-17646-x
    Sun, X., Luo, Y., Gao, X., Wu, M., Li, M., Huang, L., Zhang, D.L., Xu, H., 2021. On the localized extreme rainfall over the great bay area in South China with complex topography and strong UHI effects. Mon. Weather Rev. 149, 2777–2801. https://doi.org/10.1175/MWR-D-21-0004.1
    Taha, H., 1997. Modeling the impacts of large-scale albedo changes on ozone air quality in the South Coast Air Basin. Atmos. Environ. 31, 1667–1676. https://doi.org/10.1016/S1352-2310(96)00336-6
    Tai, A.P.K., Val Martin, M., 2017. Impacts of ozone air pollution and temperature extremes on crop yields: Spatial variability, adaptation and implications for future food security. Atmos. Environ. 169, 11–21. https://doi.org/10.1016/j.atmosenv.2017.09.002
    Tang, G., Liu, Y., Zhang, J., Liu, B., Li, Q., Sun, J., Wang, Yinghong, Xuan, Y., Li, Y., Pan, J., Li, X., Wang, Yuesi, 2021. Bypassing the NOx titration trap in ozone pollution control in Beijing. Atmos. Res. 249, 105333. https://doi.org/10.1016/j.atmosres.2020.105333
    Tang, G., Zhu, X., Xin, J., Hu, B., Song, T., Sun, Y., Wang, L., Cheng, M., Li, X., Wang, Y., Zhang, J., Chao, N., Kong, L., Li, X., 2017a. Modelling study of boundary-layer ozone over northern China - Part I: Ozone budget in summer. Atmos. Res. 187, 128–137. https://doi.org/10.1016/j.atmosres.2016.10.017
    Tang, G., Zhu, X., Xin, J., Hu, B., Song, T., Sun, Y., Wang, L., Wu, F., Sun, J., Cheng, M., Chao, N., Li, X., Wang, Y., 2017b. Modelling study of boundary-layer ozone over northern China - Part II: Responses to emission reductions during the Beijing Olympics. Atmos. Res. 193, 83–93. https://doi.org/10.1016/j.atmosres.2017.02.014
    Tao, W., Liu, J., Ban-Weiss, G.A., Hauglustaine, D.A., Zhang, L., Zhang, Q., Cheng, Y., Yu, Y., Tao, S., 2015. Effects of urban land expansion on the regional meteorology and air quality of eastern China. Atmos. Chem. Phys. 15, 8597–8614. https://doi.org/10.5194/acp-15-8597-2015
    Tao, W.K., Simpson, J., Baker, D., Braun, S., Chou, M.D., Ferrier, B., Johnson, D., Khain, A., Lang, S., Lynn, B., Shie, C.L., Starr, D., Sui, C.H., Wang, Y., Wetzel, P., 2003. Microphysics, radiation and surface processes in the Goddard Cumulus Ensemble (GCE) model. Meteorol. Atmos. Phys. 82, 97–137. https://doi.org/10.1007/s00703-001-0594-7
    Targino, A.C., Krecl, P., Coraiola, G.C., 2014. Effects of the large-scale atmospheric circulation on the onset and strength of urban heat islands: A case study. Theor. Appl. Climatol. 117, 73–87. https://doi.org/10.1007/s00704-013-0989-7
    Tsai, D.H., Wang, J.L., Wang, C.H., Chan, C.C., 2008. A study of ground-level ozone pollution, ozone precursors and subtropical meteorological conditions in central Taiwan. J. Environ. Monit. 10, 109–118. https://doi.org/10.1039/b714479b
    Tsai, D.M., Wu, Y.L., 2006. Effects of highway networks on ambient ozone concentrations-A case study in southern Taiwan. Atmos. Environ. 40, 4004–4015. https://doi.org/10.1016/j.atmosenv.2006.01.059
    Tsai, J.H., Gu, W.T., Chung, I.I., Chiang, H.L., 2019. Airborne air toxics characteristics and inhalation health risk assessment of a metropolitan industrial complex. Aerosol Air Qual. Res. 19, 2477–2489. https://doi.org/10.4209/aaqr.2019.08.0422
    Tsai, J.H., Lin, K.H., Chen, C.Y., Lai, N., Ma, S.Y., Chiang, H.L., 2008. Volatile organic compound constituents from an integrated iron and steel facility. J. Hazard. Mater. 157, 569–578. https://doi.org/10.1016/j.jhazmat.2008.01.022
    Tsai, W.T., Lin, Y.Q., 2021. Trend analysis of air quality index (AQI) and greenhouse gas (GHG) emissions in taiwan and their regulatory countermeasures. Environments 8. https://doi.org/10.3390/environments8040029
    Ulpiani, G., 2021. On the linkage between urban heat island and urban pollution island: Three-decade literature review towards a conceptual framework. Sci. Total Environ. 751, 141727. https://doi.org/10.1016/j.scitotenv.2020.141727
    Umezaki, A.S., Ribeiro, F.N.D., de Oliveira, A.P., Soares, J., de Miranda, R.M., 2020a. Numerical characterization of spatial and temporal evolution of summer urban heat island intensity in São Paulo, Brazil. Urban Clim. 32, 100615. https://doi.org/10.1016/j.uclim.2020.100615
    Umezaki, A.S., Ribeiro, F.N.D., de Oliveira, A.P., Soares, J., de Miranda, R.M., 2020b. Numerical characterization of spatial and temporal evolution of summer urban heat island intensity in São Paulo, Brazil. Urban Clim. 32, 100615. https://doi.org/10.1016/j.uclim.2020.100615
    Varquez, A.C.G., Kanda, M., 2018. Global urban climatology: a meta-analysis of air temperature trends (1960–2009). npj Clim. Atmos. Sci. 1, 1–8. https://doi.org/10.1038/s41612-018-0042-8
    Wan, H., Zhong, Z., Yang, X., Li, X., 2013. Impact of city belt in Yangtze River Delta in China on a precipitation process in summer: A case study. Atmos. Res. 125–126, 63–75. https://doi.org/10.1016/j.atmosres.2013.02.004
    Wang, Q., Hang, J., Fan, Y., Li, Y., 2020. Urban plume characteristics under various wind speed, heat flux, and stratification conditions. Atmos. Environ. 239, 117774. https://doi.org/10.1016/j.atmosenv.2020.117774
    Wang, W., Ronald Van Der, R., Ding, J., Van Weele, M., Cheng, T., 2021. Spatial and temporal changes of the ozone sensitivity in China based on satellite and ground-based observations. Atmos. Chem. Phys. 21, 7253–7269. https://doi.org/10.5194/acp-21-7253-2021
    Wang, X., Fu, T.M., Zhang, Lin, Cao, H., Zhang, Q., Ma, H., Shen, L., Evans, M.J., Ivatt, P.D., Lu, X., Chen, Y., Zhang, Lijuan, Feng, X., Yang, X., Zhu, L., Henze, D.K., 2021. Sensitivities of ozone air pollution in the Beijing-Tianjin-Hebei area to local and upwind precursor emissions using adjoint modeling. Environ. Sci. Technol. 55, 5752–5762. https://doi.org/10.1021/acs.est.1c00131
    Wang, X., Li, J., Zhang, Y., Xie, S., Tang, X., 2009. Ozone source attribution during a severe photochemical smog episode in Beijing, China. Sci. China, Ser. B Chem. 52, 1270–1280. https://doi.org/10.1007/s11426-009-0137-5
    Wang, X., Zhang, Y., Hu, Y., Zhou, W., Zeng, L., Hu, M., Cohan, D.S., Russell, A.G., 2011. Decoupled direct sensitivity analysis of regional ozone pollution over the Pearl River Delta during the PRIDE-PRD2004 campaign. Atmos. Environ. 45, 4941–4949. https://doi.org/10.1016/j.atmosenv.2011.06.006
    Wang, X.M., Lin, W.S., Yang, L.M., Deng, R.R., Lin, H., 2007. A numerical study of influences of urban land-use change on ozone distribution over the Pearl River Delta region, China. Tellus, Ser. B Chem. Phys. Meteorol. https://doi.org/10.1111/j.1600-0889.2007.00271.x
    Warneke, C., de Gouw, J.A., Goldan, P.D., Kuster, W.C., Williams, E.J., Lerner, B.M., Jakoubek, R., Brown, S.S., Stark, H., Aldener, M., Ravishankara, A.R., Roberts, J.M., Marchewka, M., Bertman, S., Sueper, D.T., McKeen, S.A., Meagher, J.F., Fehsenfeld, F.C., 2004. Comparison of daytime and nighttime oxidation of biogenic and anthropogenic VOCs along the New England coast in summer during New England Air Quality Study 2002. J. Geophys. Res. D Atmos. 109, 1–14. https://doi.org/10.1029/2003JD004424
    Wei, J., Tang, G., Zhu, X., Wang, L., Liu, Z., Cheng, M., Münkel, C., Li, X., Wang, Y., 2018. Thermal internal boundary layer and its effects on air pollutants during summer in a coastal city in North China. J. Environ. Sci. (China) 70, 37–44. https://doi.org/10.1016/j.jes.2017.11.006
    Whitten, G.Z., Heo, G., Kimura, Y., McDonald-Buller, E., Allen, D.T., Carter, W.P.L., Yarwood, G., 2010. A new condensed toluene mechanism for Carbon Bond: CB05-TU. Atmos. Environ. 44, 5346–5355. https://doi.org/10.1016/j.atmosenv.2009.12.029
    Wood, E.C., Herndon, S.C., Onasch, T.B., Kroll, J.H., Canagaratna, M.R., Kolb, C.E., Worsnop, D.R., Neuman, J.A., Seila, R., Zavala, M., Knighton, W.B., 2009. A case study of ozone production, nitrogen oxides, and the radical budget in Mexico City. Atmos. Chem. Phys. 9, 2499–2517. https://doi.org/10.5194/acp-9-2499-2009
    Wu, F., Yu, Y., Sun, J., Zhang, J., Wang, J., Tang, G., Wang, Y., 2016. Characteristics, source apportionment and reactivity of ambient volatile organic compounds at Dinghu Mountain in Guangdong Province, China. Sci. Total Environ. 548–549, 347–359. https://doi.org/10.1016/j.scitotenv.2015.11.069
    Xiao, X., Cohan, D.S., Byun, D.W., Ngan, F., 2010. Highly nonlinear ozone formation in the Houston region and implications for emission controls. J. Geophys. Res. Atmos. 115, 1–12. https://doi.org/10.1029/2010JD014435
    Xie, B., Fung, J.C.H., Chan, A., Lau, A., 2012. Evaluation of nonlocal and local planetary boundary layer schemes in the WRF model. J. Geophys. Res. Atmos. 117. https://doi.org/10.1029/2011JD017080
    Xing, C., Liu, C., Wang, S., Lok Chan, K., Gao, Y., Huang, X., Su, W., Zhang, C., Dong, Y., Fan, G., Zhang, T., Chen, Z., Hu, Q., Su, H., Xie, Z., Liu, J., 2017. Observations of the vertical distributions of summertime atmospheric pollutants and the corresponding ozone production in Shanghai, China. Atmos. Chem. Phys. 17, 14275–14289. https://doi.org/10.5194/acp-17-14275-2017
    Xing, J., Wang, J., Mathur, R., Wang, S., Sarwar, G., Pleim, J., Hogrefe, C., Zhang, Y., Jiang, J., Wong, D.C., Hao, J., 2017. Impacts of aerosol direct effects on tropospheric ozone through changes in atmospheric dynamics and photolysis rates. Atmos. Chem. Phys. 17, 9869–9883. https://doi.org/10.5194/acp-17-9869-2017
    Xing, J., Wang, S.X., Jang, C., Zhu, Y., Hao, J.M., 2011. Nonlinear response of ozone to precursor emission changes in China: A modeling study using response surface methodology. Atmos. Chem. Phys. 11, 5027–5044. https://doi.org/10.5194/acp-11-5027-2011
    Yang, J., Xin, J., Zhang, Y., Xiao, X., Xia, J.C., 2022. Contributions of sea – land breeze and local climate zones to daytime and nighttime heat island intensity. Urban Sustain. 2. https://doi.org/10.1038/s42949-022-00055-z
    Yang, Y.J., Wilkinson, J.G., Russell, A.G., 1997. Fast, direct sensitivity analysis of multidimensional photochemical models. Environ. Sci. Technol. 31, 2859–2868. https://doi.org/10.1021/es970117w
    Yao, X., Wang, Z., Wang, H., 2015. Impact of Urbanization and Land-Use Change on Surface Climate in Middle and Lower Reaches of the Yangtze River, 1988-2008. Adv. Meteorol. 2015. https://doi.org/10.1155/2015/395094
    Yarwood, G., Jung, J., Whitten, G.Z., Heo, G., Mellberg, J., Estes, M., 2010a. Updates to the Carbon Bond Mechanism for Version 6 (CB6), in: 9th Annual CMAS Conference, Chapel Hill, NC, October 11-13. pp. 1–4.
    Yarwood, G., Rao, S., Yocke, M., Whitten, G.Z., 2005. Updates to the carbon bond chemical mechanism: CB05 - Prepared for Deborah Luecken U.S. Environmental Protection Agency Research Triangle Park, NC 27703, Report to the US Environmental Protection Agency RT-04-00675.
    Yarwood, G., Whitten, G.Z., Jung, J., 2010b. Development, Evaluation and Testing of Version 6 of the Carbon Bond Chemical Mechanism (CB6).
    Yenneti, K., Ding, L., Prasad, D., Ulpiani, G., Paolini, R., Haddad, S., Santamouris, M., 2020. Urban overheating and cooling potential in australia: An evidence-based review. Climate 8, 1–22. https://doi.org/10.3390/cli8110126
    Yim, S.H.L., Wang, M., Gu, Y., Yang, Y., Dong, G., Li, Q., 2019. Effect of Urbanization on Ozone and Resultant Health Effects in the Pearl River Delta Region of China. J. Geophys. Res. Atmos. 124, 11568–11579. https://doi.org/10.1029/2019JD030562
    Yoshikado, H., 1994. Interaction of the sea breeze with urban heat islands of different sizes and locations. J. Meteorol. Soc. Japan 72, 139–142.
    Yoshikado, H., Tsuchida, M., 1996. High levels of winter air pollution under the influence of the urban heat island along the shore of Tokyo bay. J. Appl. Meteorol. 35, 1804–1813.
    Yu, D., Tan, Z., Lu, K., Ma, X., Li, X., Chen, S., Zhu, B., Lin, L., Li, Y., Qiu, P., Yang, X., Liu, Y., Wang, H., He, L., Huang, X., Zhang, Y., 2020. An explicit study of local ozone budget and NOx-VOCs sensitivity in Shenzhen China. Atmos. Environ. 224, 117304. https://doi.org/10.1016/j.atmosenv.2020.117304
    Yu, R., Lin, Y., Zou, J., Dan, Y., Cheng, C., 2021. Review on atmospheric ozone pollution in china: Formation, spatiotemporal distribution, precursors and affecting factors. Atmosphere (Basel). 12. https://doi.org/10.3390/atmos12121675
    Yu, S., Su, F., Yin, S., Wang, S., Xu, R., He, B., Fan, X., Yuan, M., Zhang, R., 2021. Characterization of ambient volatile organic compounds, source apportionment, and the ozone-NOx-VOC sensitivities in a heavily polluted megacity of central China: Effect of sporting events and the emission reductions. Atmos. Chem. Phys. Discuss. 1–61. https://doi.org/10.5194/acp-2021-293
    Yu, T.Y., Chang, L.F.W., 2000. Selection of the scenarios of ozone pollution at southern Taiwan area utilizing principal component analysis. Atmos. Environ. 34, 4499–4509. https://doi.org/10.1016/S1352-2310(00)00112-6
    Zaveri, R.A., Berkowitz, C.M., Kleinman, L.I., Springston, S.R., Doskey, P. V., Lonneman, W.A., Spicer, C.W., 2003. Ozone production efficiency and NOx depletion in an urban plume: Interpretation of field observations and implications for evaluating O3-NOx-VOC sensitivity. J. Geophys. Res. Atmos. 108. https://doi.org/10.1029/2002jd003144
    Zhang, J.J., Wei, Y., Fang, Z., 2019. Ozone pollution: A major health hazard worldwide. Front. Immunol. 10, 1–10. https://doi.org/10.3389/fimmu.2019.02518
    Zhang, N., Gao, Z., Wang, X., Chen, Y., 2010. Modeling the impact of urbanization on the local and regional climate in Yangtze River Delta, China. Theor. Appl. Climatol. 102, 331–342. https://doi.org/10.1007/s00704-010-0263-1
    Zhang, Y., Wang, X., Barletta, B., Simpson, I.J., Blake, D.R., Fu, X., Zhang, Z., He, Q., Liu, T., Zhao, X., Ding, X., 2013. Source attributions of hazardous aromatic hydrocarbons in urban, suburban and rural areas in the Pearl River Delta (PRD) region. J. Hazard. Mater. 250–251, 403–411. https://doi.org/10.1016/j.jhazmat.2013.02.023
    Zhang, Y., Wen, X.-Y., Wang, K., Vijayaraghavan, K., Jacobson, M.Z., 2009. Probing into regional O 3 and particulate matter pollution in the United States: 2. An examination of formation mechanisms through a process analysis technique and sensitivity study . J. Geophys. Res. 114, 1–31. https://doi.org/10.1029/2009jd011900
    Zhao, N., Wang, G., Li, G., Lang, J., 2021. Trends in air pollutant concentrations and the impact of meteorology in shandong province, coastal China, during 2013-2019. Aerosol Air Qual. Res. 21, 1–16. https://doi.org/10.4209/aaqr.200545
    Zhao, Q., Bi, J., Liu, Q., Ling, Z., Shen, G., Chen, F., Qiao, Y., Li, C., Ma, Z., 2020. Sources of volatile organic compounds and policy implications for regional ozone pollution control in an urban location of Nanjing, East China. Atmos. Chem. Phys. 20, 3905–3919. https://doi.org/10.5194/acp-20-3905-2020
    Zhao, W., Tang, G., Yu, H., Yang, Y., Wang, Yinghong, Wang, L., An, J., Gao, W., Hu, B., Cheng, M., An, X., Li, X., Wang, Yuesi, 2019. Evolution of boundary layer ozone in Shijiazhuang, a suburban site on the North China Plain. J. Environ. Sci. (China) 83, 152–160. https://doi.org/10.1016/j.jes.2019.02.016
    Zheng, J., Zhang, L., Che, W., Zheng, Z., Yin, S., 2009. A highly resolved temporal and spatial air pollutant emission inventory for the Pearl River Delta region, China and its uncertainty assessment. Atmos. Environ. 43, 5112–5122. https://doi.org/10.1016/j.atmosenv.2009.04.060
    Zhou, L., Bao, Q., Liu, Y., Wu, G., Wang, W.-C., Wang, X., He, B., Yu, H., Li, J., 2015. Seasonal variation of local atmospheric circulations and boundary layer structure in the Beijing-Tianjin-Hebei region and implications for air quality. J. Adv. Model. Earth Syst. 6, 513–526. https://doi.org/doi:10.1002/2015MS000522
    Zhou, X., Li, Z., Zhang, T., Wang, Fanglin, Wang, Feiteng, Tao, Y., Zhang, X., Wang, Fanglong, Huang, J., 2019. Volatile organic compounds in a typical petrochemical industrialized valley city of northwest China based on high-resolution PTR-MS measurements: Characterization, sources and chemical effects. Sci. Total Environ. 671, 883–896. https://doi.org/10.1016/j.scitotenv.2019.03.283

    QR CODE
    :::