跳到主要內容

簡易檢索 / 詳目顯示

研究生: 凃伯璁
Po-tsung Tu
論文名稱: 具氮化鎵表面披覆層之空乏型氮化鋁銦/氮化鎵場效電晶體之直流與動態特性研究
Direct Current and Dynamic Characteristics of Depletion Mode AlInN/GaN Field-Effect Transistors with a GaN Cap Layer
指導教授: 綦振瀛
Jen-inn Chyi
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 76
中文關鍵詞: 氮化鎵氮化鋁銦崩潰電壓動態電阻閘極絕緣層披覆層
外文關鍵詞: GaN, AlInN, Breakdown voltage, Dynamic on-resistance, Gate insulator, Cap layer
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文主要內容為探討表面氮化鎵披覆層對於氮化鋁銦/氮化鎵電晶體元件特性的影響,期能利用此披覆層改善傳統氮化鋁銦漏電流和崩潰特性不佳的問題。利用一維Poisson方程式模擬具不同表面披覆層厚度之材料電子濃度和能帶,並使用TCAD模擬不同磊晶層在截止偏壓下之電場分佈。模擬指出相較於表面沒有披覆層之結構,表面具有一26 nm披覆層後,其二維電子氣濃度會因為導電帶抬升而降低,靠近汲極端的閘極邊緣電場峰值則由15.16 MV/cm降低到2.22 MV/cm。此反極化效果因可抬升能帶,降低閘極漏電流,分散電場,故使元件之截止態崩潰電壓大幅提升。
      本研究所製作的高電子遷移率電晶體(蕭基接面場效電晶體)之直流和動態特性顯示,表面具有26 nm披覆層的元件具有一低開啟電阻(2.68 mΩ-cm2),其最低的截止態漏電流為114 μA/mm,最大的截止態崩潰電壓為172 V。在具有13 nm表面披覆層的結構上製作具二氧化矽閘極絕緣層的金氧半場效電晶體,崩潰電壓可進一步提升至675 V。實驗結果顯示,氮化鎵表面披覆層除了可降低元件閘極電場,更能有效降低電流崩塌效應與動態電阻值。此外,藉由變溫動態電阻量測,磊晶缺陷的活化能亦有初步推估結果。


      In this work the influence of GaN cap layer on the performance of AlInN/GaN HEMTs (high electron mobility transistors) is studied to improve issues such as high leakage current and low breakdown voltage often found on conventional AlInN HEMTs. The two dimensional electro gas concentration and band structure of AlInN/GaN HEMTs with different GaN cap layer thickness is estimated by 1-D Poisson simulator. Silvaco TCAD simulator is also used to simulate the distribution of electric field of the device operated under off-state condition. Compared with the AlInN HEMTs without a cap layer, the HEMTs with a 26 nm GaN cap layer have lower sheet electron concentration due to the raised conduction band neat the gate, and lower peak electric field at the gate edge toward the drain side, i.e. decreasing from 15.16 MV/cm to 2.22 MV/cm. It is shown that due to the reverse polarization field associated with the GaN cap layer, which raises the conduction band, spreads the electric field at the gate edge, and decreases the gate leakage current, the breakdown voltage of the devices is significantly enhanced.
      Among the devices with different cap thickness, HEMTs (Schottky gate FETs) with a 26 nm cap exhibit the lowest Ron of 2.68 mΩ-cm2, the lowest Id,off of 114 μA/mm, and the highest Vbk of 172 V. It is also demonstrated that off-state breakdown voltage as high as 675 V can be realized on MIS-FETs with a 13 nm SiO2 gate insulator. In addition, AlInN HEMTs with a GaN cap layer also exhibit improved dynamic on-resistance characteristics. The activation energies associated with the defects in the material are also analyzed by temperature-dependent dynamic on-resistance measurements.

    論文摘要 VI Abstract VII 誌謝 VIII 目錄 X 圖目錄 XII 表目錄 XV 第一章 緒論 1 1.1前言 1 1.2 氮化鎵材料特性 3 1.2.1 自發極化效應 4 1.2.2 壓電極化效應 6 1.3 氮化鎵高功率元件發展現況 8 1.4 研究動機與論文架構 12 第二章磊晶結構與元件製作 13 2.1 磊晶結構 13 2.2 霍爾量測與分析 15 2.3 HEMT元件製程步驟 18 2.4 MIS-FET元件製程步驟 21 2.5 本章總結 25 第三章 表面披覆層對HEMT和MIS-FET之電性影響 26 3.1 HEMT電流-電壓特性 26 3.2 MIS-FET電流-電壓特性 38 3.3 本章總結 44 第四章 動態特性分析 45 4.1 動態電阻原理介紹 45 4.2 HEMT動態特性分析 47 4.3 變溫動態電阻量測 53 4.4 本章總結 56 第五章 結論 57 參考文獻 59

    [1] Yi Zhou, Dake Wang, Claude Ahyi, Chin-Che Tin, John Williams, Minseo Park, N. Mark Williams, Andrew Hanser, "High breakdown voltage Schottky rectifier fabricated on bulk n-GaN substrate," Solid-State Electronics, vol. 50, pp. 1744-1747, 2006.

    [2] Ján Kuzmíkl, "Power Electronics on InAlN/(In)GaN:Prospect for a Record Performance," IEEE Electron Device Letters, vol. 22, pp. 510-512, 2001.

    [3] J. Kuzmik, G. Pozzovivo, C. Ostermaier, G. Strasser, D. Pogany, E. Gornik, J.-F. Carlin, M. Gonschorek, E. Feltin, and N. Grandjean, "Analysis of degradation mechanisms in lattice-matched InAlN/GaN highelectron-mobility transistors," Joural of Applied Physics, vol. 106, pp. 124503, 2009.

    [4] F. Medjdoub, J.-F. Carlin, M. Gonschorek, E. Feltin, M.A. Py, D. Ducatteau, C. Gaquière, N. Grandjean, and E. Kohn, "Can InAlN/GaN be an alternative to high power / high temperature AlGaN/GaN devices?" International Electron Devices Meeting(IEDM), pp. 1–4, 2006.

    [5] Dong Seup Lee, Xiang Gao, Shiping Guo, David Kopp, Patrick Fay, and Tomás Palacios, "300-GHz InAlN/GaN HEMTs With InGaN Back Barrier," IEEE Electron Device Letters, vol. 32, pp. 1525-1527, 2011.

    [6] Hisashi Saito, Yoshiharu Takada, Masahiko Kuraguchi, Miki Yumoto, and Kunio Tsuda, "Over 550 V breakdown voltage of InAlN/GaN HEMT on Si," Phys. Status Solidi C, vol. 10, pp. 824-826, 2013.

    [7] J. Kuzmik, G. Pozzovivo, J.-F. Carlin, M. Gonschorek, E. Feltin, N. Grandjean, G. Strasser,D. Pogany, and E. Gornik, "Off-state breakdown in InAlN/AlN/GaN high electron mobility transistors," Phys. Status Solidi C, vol. 6, pp. 925-928, 2009.

    [8] Qi Zhou, Hongwei Chen, Chunhua Zhou, Z. H. Feng, S. J. Cai, and Kevin J. Chen, "Schottky Source/Drain InAlN/AlN/GaN MISHEMT With Enhanced Breakdown Voltage," IEEE Electron Device Letters, vol. 33, pp. 38-40, 2012.

    [9] Hyung-Seok Lee, Member, IEEE, Daniel Piedra, Min Sun, Xiang Gao, Shiping Guo, and Tomás Palacios, "3000-V 4.3-mΩ•cm2 InAlN/GaN MOSHEMTs With AlGaN Back Barrier," IEEE Electron Device Letters, vol. 33, pp. 982-984, 2012.

    [10] Qi Zhou, Wanjun Chen, Shenghou Liu, Bo Zhang, Zhihong Feng, Shujun Cai, and Kevin J. Chen, "Schottky-Contact Technology in InAlN/GaN HEMTs for Breakdown Voltage Improvement," IEEE Transactions on Electron Devices, vol. 60, pp. 1075-1081, 2013.

    [11] Zhongda Li, and T. P. Chow, "Drift region optimization in high-voltage GaN MOS-gated HEMTs," Phys. Status Solidi C, vol. 8, pp. 2436-2438, 2011.

    [12] Rongming Chu, Andrea Corrion, Mary Chen, Ray Li, Danny Wong, Daniel Zehnder, Brian Hughes, and Karim Boutros, "1200-V Normally Off GaN-on-Si Field-Effect Transistors With Low Dynamic ON-Resistance," IEEE Electron Device Letters, vol. 32, pp. 632-634, 2011.

    [13] Zhikai Tang, Sen Huang, Qimeng Jiang, Shenghou Liu, Cheng Liu, and Kevin J. Chen, "High-Voltage (600-V) Low-Leakage Low-Current-Collapse AlGaN/GaN HEMTs With AlN/SiNx Passivation," IEEE Electron Device Letters, vol. 34, pp. 366-368, 2013.

    [14] Michal Jurkoviˇc, Dagmar Gregušová, Vassil Palankovski, Štefan Hašcˇík, Michal Blaho, Karol Cˇ icˇo, Karol Fröhlich, Jean-Francois Carlin, Nicolas Grandjean, and Ján Kuzmík, "Schottky-Barrier Normally Off GaN/InAlN/AlN/GaN HEMT With Selectively Etched Access Region," IEEE Electron Device Letters, vol. 34, pp. 432-434, 2013.

    [15] M. apajna and J. Kuzmík, "A comprehensive analytical model for threshold voltage calculation in GaN based metal-oxide-semiconductor high-electron-mobility transistors," Applied Physics Letters, vol. 100, pp. 113509, 2012.

    [16] Donghyun Jin, and Jesús A. del Alamo, "Methodology for the Study of Dynamic ON-Resistance in High-Voltage GaN Field-Effect Transistors," IEEE Transactions on Electron Devices, vol. 60, pp. 3190-3196, 2013.

    [17] W. Chikhaoui, J.-M. Bluet, M.-A. Poisson, N. Sarazin, C. Dua, and C. Bru-Chevallier, "Current deep level transient spectroscopy analysis of AlInN/GaN high electron mobility transistors: Mechanism of gate leakage," Applied Physics Letters, vol. 96, pp. 072107, 2010.

    [18] A.Y. Polyakov, N.B. Smirnov, A.V. Govorkov, M.G. Mil_vidskii, S.J. Pearton, A.S. Usikov, N.M. Shmidt, A.V. Osinsky, W.V. Lundin, E.E. Zavarin, A.I. Besulkin, "Deep levels studies of AlGaN/GaN superlattices," Solid-State Electronics, vol. 47, pp. 671-676, 2003.

    QR CODE
    :::