| 研究生: |
梁竣瑋 Zing-Wei Loong |
|---|---|
| 論文名稱: |
利用 CRISPR/Cas9 基因編輯技術探討水稻 DEAD-box RNA 解旋酶 42 之功能 Functional analysis of the rice DEAD-box RNA helicase 42 via CRISPR/Cas9 technology |
| 指導教授: |
陸重安
Chung-An Lu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生醫理工學院 - 生命科學系 Department of Life Science |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 水稻 、解旋酶 、基因編輯 |
| 外文關鍵詞: | Oryza sativa, RNA helicase, CRISPR/Cas9 |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
冷逆境影響植物生長發育與農作物的產量。生物處於低溫環境時,RNA分子結構難以維持正常導致無法執行應有的功能。RNA解旋酶在幫助RNA維持正常結構上扮演了重要的角色。DEAD-box RNA解旋酶是RNA解旋酶家族超級家族二的成員,這個家族成員參與了許多細胞生理過程,包括轉錄、mRNA剪接、核糖體rRNA生合成、RNA出核、轉譯等。根據先前研究,OsRH42與水稻生長發育相關且參與冷逆境相關基因之pre-mRNA剪接機制。進一步瞭解水稻OsRH42之功能,本論文利用CRISPR-Cas9技術產生OsRH42突變株,以基因編輯T0代突變株中的兩條染色體上OsRH42都有突變,分別是刪除11對鹼基對(為out-frame突變)及刪除60對鹼基對(為剪接缺失突變),而T1代所分析的成熟種子之基因型都是同型合子剪接缺失突變,且T0代成熟的種子佔熟穗種子總數之四分之一。剪接缺失突變株T2代較野生型水稻矮小且對冷逆境更加敏感。進一步分析發現,剪接缺失突變株T2代在冷處理18小時後與野生型相比,其受冷誘導表現基因之pre-mRNA有較多的内含子殘留量。這些結果顯示剔除OsRH42基因影響水稻雌雄配子發育,導致種子無法生成。OsRH42片段缺失蛋白也影響水稻小苗生長發育,並降低水稻冷逆境相關基因之内含子剪接效率,使突變株的抗冷逆境能力下降。
Low temperature adversely affects plant growth and crop production. Correct RNA structure is difficult to be maintained under low temperature conditions. RNA helicases play an important role in maintaining functional RNA structures. DEAD-box RNA helicases belong to superfamily II of the RNA helicase family, and their function are involved in many cellular processes, including transcription, RNA splicing, ribosomal RNA biosynthesis, RNA export, translation, etc. Previous study showed that the OsRH42 is involved in rice growth and cold-responsive genes pre-mRNA splicing. In this study, a OsRH42 mutant line was generated by using a CRISPR-Cas9 system. T0 generation of OsRH42 mutant occured fragment deletion mutations at coding region of OsRH42 gene at both chromosomes, one chromosome has 60 bp deletion (in-frame mutation) and another chromosome has 11 bp deletion (frameshift mutation). T0 generation mutant had 25% seed setting rate. Interestingly, T1 generation seeds all were homozygous of 60 bp deletion in-frame mutation. The T2 generation in-frame mutation mutant showed shorter plant height and reduced cold tolerance, compared with wild type. These results showed OsRH42 defect by frameshift mutation leaded to seed abortion, implied that OsRH42 is an essential gene during develpoment of male and female gametes. Besides, T2 generation in-frame mutant slightly increased the intron retention of cold stress-responsive genes after 18 h cold stress. Thus, the T2 generation in-frame mutant showed adversely affect rice growth, reduced the intron splicing efficiency of cold stress-responsive genes, and ultimately led to reduced cold tolerance in rice.
肆、 參考文獻
Agarwal, P.K., et al., Role of DREB transcription factors in abiotiCand biotiCstress tolerance in plants. Plant Cell Rep, 2006. 25(12): p. 1263-74.
Almadanim, M.C., et al., The rice cold-responsive calcium-dependent protein kinase OsCPK17 is regulated by alternative splicing and post-translational modifications. Biochim Biophys Acta Mol Cell Res, 2018. 1865(2): p. 231-246.
Black, D.L., Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem, 2003. 72: p. 291-336.
Calixto, C.P.G., et al., Rapid and DynamiCAlternative Splicing Impacts the Arabidopsis Cold Response Transcriptome. Plant Cell, 2018. 30(7): p. 1424-1444.
Chinnusamy, V., J.K. Zhu, and R. Sunkar, Gene regulation during cold stress acclimation in plants. Methods Mol Biol, 2010. 639: p. 39-55.
Dong, C., et al., Alternative Splicing Plays a Critical Role in Maintaining Mineral Nutrient Homeostasis in Rice(Oryza sativa). Plant Cell, 2018. 30(10): p. 2267-2285.
Fairman-Williams, M.E., U.P. Guenther, and E. Jankowsky, SF1 and SF2 helicases: family matters. Curr Opin Struct Biol, 2010. 20(3): p. 313-24.
Fang, Y., S. Hearn, and D.L. Spector, Tissue-specifiCexpression and dynamiCorganization of SR splicing factors in Arabidopsis. Mol Biol Cell, 2004. 15(6): p. 2664-73.
Fernandez-Jimenez, N. and M. Pradillo, The role of the nuclear envelope in the regulation of chromatin dynamics during cell division. J Exp Bot, 2020. 71(17): p. 5148-5159.
Filichkin, S.A., et al., Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Genome Res, 2010. 20(1): p. 45-58.
Fukagawa, N.K. and L.H. Ziska, Rice: Importance for Global Nutrition. J Nutr Sci Vitaminol(Tokyo), 2019. 65(Supplement): p. S2-S3.
Godoy, F., et al., AbiotiCStress in Crop Species: Improving Tolerance by Applying Plant Metabolites. Plants(Basel), 2021. 10(2).
Guan, Q., et al., A DEAD box RNA helicase is critical for pre-mRNA splicing, cold-responsive gene regulation, and cold tolerance in Arabidopsis. Plant Cell, 2013. 25(1): p. 342-56.
Ito, Y., et al., Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgeniCrice. Plant Cell Physiol, 2006. 47(1): p. 141-53.
Jarmoskaite, I. and R. Russell, DEAD-box proteins as RNA helicases and chaperones. Wiley Interdiscip Rev RNA, 2011. 2(1): p. 135-52.
Korner, C., Plant adaptation to cold climates. F1000Res, 2016. 5.
Li, J., et al., Chilling tolerance in rice: Past and present. J Plant Physiol, 2022. 268: p. 153576.
Liang, W.W. and S.C. Cheng, A novel mechanism for Prp5 function in prespliceosome formation and proofreading the branch site sequence. Genes Dev, 2015. 29(1): p. 81-93.
Linder, P. and E. Jankowsky, From unwinding to clamping the DEAD box RNA helicase family. Nat Rev Mol Cell Biol, 2011. 12(8): p. 505-16.
Liu, Y., et al., Cold acclimation by the CBF-COR pathway in a changing climate: Lessons from Arabidopsis thaliana. Plant Cell Rep, 2019. 38(5): p. 511-519.
Liu, Y., D. Tabata, and R. Imai, A Cold-Inducible DEAD-Box RNA Helicase from Arabidopsis thaliana Regulates Plant Growth and Development under Low Temperature. PLoS One, 2016. 11(4): p. e0154040.
Loden, M. and B. van Steensel, Whole-genome views of chromatin structure. Chromosome Res, 2005. 13(3): p. 289-98.
Lu, C.A., et al., DEAD-Box RNA Helicase 42 Plays a Critical Role in Pre-mRNA Splicing under Cold Stress. Plant Physiol, 2020. 182(1): p. 255-271.
Mortimer, S.A., M.A. Kidwell, and J.A. Doudna, Insights into RNA structure and function from genome-wide studies. Nat Rev Genet, 2014. 15(7): p. 469-79.
Nilsen, T.W. and B.R. Graveley, Expansion of the eukaryotiCproteome by alternative splicing. Nature, 2010. 463(7280): p. 457-63.
Owthtrim, G.W., RNA helicases: diverse roles in prokaryotiCresponse to abiotiCstress. RNA Biol, 2013. 10(1): p. 96-110.
Perriman, R., et al., ATP requirement for Prp5p function is determined by Cus2p and the structure of U2 small nuclear RNA. ProCNatl Acad Sci U S A, 2003. 100(24): p. 13857-62.
Quina, A.S., M. Buschbeck, and L. Di Croce, Chromatin structure and epigenetics. Biochem Pharmacol, 2006. 72(11): p. 1563-9.
Reddy, A.S. and G. Shad Ali, Plant serine/arginine-rich proteins: roles in precursor messenger RNA splicing, plant development, and stress responses. Wiley Interdiscip Rev RNA, 2011. 2(6): p. 875-89.
Rocak, S. and P. Linder, DEAD-box proteins: the driving forces behind RNA metabolism. Nat Rev Mol Cell Biol, 2004. 5(3): p. 232-41.
Rose, A., S. Patel, and I. Meier, The plant nuclear envelope. Planta, 2004. 218(3): p. 327-36.
Tuteja, N., A.A. Vashisht, and R. Tuteja, Translation initiation factor 4A: a prototype member of dead-box protein family. Physiol Mol Biol Plants, 2008. 14(1-2): p. 101-7.
Wahl, M.C., C.L. Will, and R. Luhrmann, The spliceosome: design principles of a dynamiCRNP machine. Cell, 2009. 136(4): p. 701-18.
Waqas, M.A., et al., Potential Mechanisms of AbiotiCStress Tolerance in Crop Plants Induced by Thiourea. Front Plant Sci, 2019. 10: p. 1336.
Will, C.L. and R. Luhrmann, Spliceosomal UsnRNP biogenesis, structure and function. Curr Opin Cell Biol, 2001. 13(3): p. 290-301.
Yuan, Q., et al., Rice bioinformatics. analysis of rice sequence data and leveraging the data to other plant species. Plant Physiol, 2001. 125(3): p. 1166-74.
Zhang, H., et al., AbiotiCstress responses in plants. Nat Rev Genet, 2022. 23(2): p. 104-119.
Zhang, Q., et al., Rice and cold stress: methods for its evaluation and su mMary of cold tolerance-related quantitative trait loci. Rice(N Y), 2014. 7(1): p. 24.
Zhang, Q., et al., Coordinated Dynamics of RNA Splicing Speckles in the Nucleus. J Cell Physiol, 2016. 231(6): p. 1269-75.
Liu, H., et al., CRISPR-P 2.0: An Improved CRISPR-Cas9 Tool for Genome Editing in Plants. Mol Plant, 2017. 10(3): p. 530-532.
Hahn, F. and V. Nekrasov, CRISPR/Cas precision: do we need to worry about off-targeting in plants? Plant Cell Rep, 2019. 38(4): p. 437-441.
Okuzaki, A., et al., Estrogen-inducible GFP expression patterns in rice(Oryza sativa L.). Plant Cell Rep, 2011. 30(4): p. 529-38.
Tang, Q., et al., SF3B1/Hsh155 HEAT motif mutations affect interaction with the spliceosomal ATPase Prp5, resulting in altered branch site selectivity in pre-mRNA splicing. Genes Dev, 2016. 30(24): p. 2710-2723.