| 研究生: |
陳靜誼 Ching-Yi Chen |
|---|---|
| 論文名稱: |
光子晶體波導光束直進之研究 Collimated Beam in Photonic Crystal Waveguides |
| 指導教授: |
陳啟昌
Chii-Chang Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 116 |
| 中文關鍵詞: | 光子晶體波導 |
| 外文關鍵詞: | Photonic Crystal Waveguides, Collimated Beam |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究中,我們設計二維以及三維光束直進之結構,將提出一個新的二維六角晶格的光子晶體波導結構,以達成準直輸出的光束。藉由運用平面波展開法,與有限時域差分法,針對二維結構做數值模擬與分析。本研究中也以有限時域差分法為基礎,提出新的光損耗與反射率之計算方法,可計算出各結構的反射率與傳輸損耗。除此之外,本研究以貝色光束的概念,分析探討三維環型之光子晶體波結構。使光侷限於該結構的中央,形成一圓形對稱之環型波導,光束更加準直,能量傳遞距離更長。準直且具指向性之光源可以提升光子晶體波導耦合進入傳統波導的耦合效率,也可以應用於光子晶體超高功率雷射,以取代介電材料之透鏡,使雷射有直進、超細光束與低耗損之特性,若滿足電磁波在方向性上之要求,可以運用於高指向微波天線。
In this work, we propose a novel output design of the photonic-crystal waveguides (PCWG) structures to investigate the enhancement of the collimated beam that was radiated from PCWG. First, we design novel two-dimensional PCWGs in hexagonal lattice. We simulate and analyze different structures by using the finite-difference time-domain numerical method and the plane wave expansion method. Based on the finite-difference time-domain numerical method, we propose a novel method to calculate the propagation loss and reflection for PCWGs. This method can be applied on single or multimode low-loss PCWGs. On the concept of the Bessel beam, we analyze and discuss the three-dimensional radial PCWG to enhance the collimated beam and propagation distance. The collimated emission is attractive for enhancing the coupling efficiency of light from PCWG into conventional dielectric waveguides, to control the emission direction of PC edge-emitting lasers, to apply to the high power laser to replace the dielectric lenses and to obtain the high collimated microwave beam.
[1.1]E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059(1987).
[1.2] S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486(1987).
[1.3] http://www.lostseaopals.com.au/opals/index.asp
[1.4] L. P. Biró, Zs. Bálint, K. Kertész, Z. Vértesy, G. I. Márk, Z. E. Horváth, J. Balázs, D. Méhn, I. Kiricsi, V. Lousse, J.-P. Vigneron, “Role of Photonic-Crystal-Type Structures in the Thermal Regulation of a Lycaenid Butterfly Sister Species Pair,” Phys. Rev. E, 67, 021907 (2003).
[1.5] 奈米科學網 http://nano.nchc.org.tw
[1.6] J. D. Joannopoulos, ‘Photonic Crystals -Molding the Flow of Light,’ Princeton University Press, 41, William Street, Princeton, New Jersey 08540, p. 6(1995)
[1.7] 光學工程 第九十五期95.09,“有機發光二極體專欄”
[1.8] E. Yablonovitch and T. J. Gmitter, Phys. Rev. Lett. 63, 1950 (1989).
[1.9] O. Painter,“Two-Dimensional Photonic Band-Gap Defect Mode Laser,”Science,284,1819(1999).
[1.10] Alexei A. Erchak, Daniel J. Ripin, Shanhui Fan, Peter Rakich, John D. Joannopoulos, Erich P. Ippen, Gale S. Petrich and Leslie A. Kolodziejski, “Enhanced coupling to vertical radiation using a two-dimensional photonic crystal.
[1.11] Attila Mekis, J. C. Chen, I. Kurland ,Shanhui Fan, Pierre R. Villeneuve, and J. D. Joannopoulos, “High Transmission through Sharp Bends in Photonic Crystal Waveguides,” Phys. Rev. Lett. 77, 3787 (1996).
[1.12] Alongkarn Chutinan and Susumu Noda, “Highly confined waveguides and waveguide bends in three-dimensional photonic crystal,” Appl. Phys. Lett,. 75,24(1999).
[1.13] Steven K. Morrison and Yuri S. Kivshar, "Engineering of directional emission from photonic-crystal waveguides," Appl. Phys. Lett, 86, 081110(2005).
[1.14] Esteban Moreno, F. J. Garcı´a Garc1´a-Vidal, and L. Mart1´n- Moreno, "Enhanced transmission and beaming of light via photonic crystal surface modes," Phys. Rev. B ,69, 121402 (2004).
[1.15] 欒丕綱, 陳啟昌, 《光子晶體-從蝴蝶翅膀到奈米光子學》, 五南出版社 (2005).
[1.16] Chii-Chang Chen, T. Pertsch, R. Iliew, F. Lederer, A. Tünnermann ," Directional emission from photonic crystal waveguides," Optics Express.14,6 (2006).
[2.1] K. Sakoda, “Optic Properties of Photonic Crystals, Springer-Verlag”, p.151(2004).
[2.2] K. Kawano and T. Kitoh ,“Introduction to Optical Waveguide Analysis”, WILEY, 233 (2001).
[2.3] K.S.Yee,” Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media,” IEEE Trans. Antennas Propag, 14, 302-307 (1966).
[2.4] J. P. Berenger, “A Perfectly Matched Layer for the Absorption of Electromagnetic Waves,” J. Comput. Phys. 114, 185(1994).
[2.5] 簡宏達, “二維雙輸入雙輸出光子晶體分光器”, 國立中央大學光電科學研究所, 碩士論文, 2004
[2.6] M. V. Kotlyar. T. Karle. M. D. Settle, L. O’Faolain, and T. F. Krauss, ” Low-loss photonic crystal defect waveguides in InP,” Appl. Phys. Lett. 84, 18(2004).
[2.7] D.Hofsletter and R. Thornton,” Theory of loss measurements of Fabry-Perot resonators by Fourier analysis of the transmission spectra ,” Opt. Lett. 22, 1831(1997).
[2.8] Atsushi SAKAI, Go HARA, Toshihiko BABA,” Propagation Characteristics of Ultrahigh-Δ Optical Waveguide on Silicon-on-Insulator Substrate ,” Appl. Phys. Lett.40,L383(2001).
[2.9] Yoshinori Tanaka, Takashi Asano, Yoshihiro Akahane, Bong-Shik Song , and Susumu Noda,” ” Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes,” Appl. Phys. Lett. 82, 11(2003).
[2.10] T. Ochiai,K. Sakoda,” Dispersion relation and optical transmittance of a hexagonal photonic crystal slab,” Phys. Rev. B 63, 125107(2001).
[2.11] Zhi-Yuan Li,Kai-Ming Ho,” Anomalous Propagation Loss Photonic Crystal Waveguides,” Phys. Rev. B, 92, 6(2004).
[2.12]. Orazio Svelto,” Principles of Lasers,” David C. Hanna, New York Plenum ,p159(1989).
[2.13] 高本慶,《時域有限差分法 FDTD method》,北京市國防工業 (1995).
[3.1] J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic,(Princeton University Press, Princeton, NJ, 1995).
[3.2] C. J. M. Smith,H. Benisty, S. Olivier, M. Rattier, C. Weisbuch,T. F. Krauss, R. M. De La Rue, R. Houdré and U. Oesterle, “Low-loss channel waveguides with two-dimensional photonic crystal boundaries,” Appl. Phys. Lett. 77, 2813-2815, (2000).
[3.3] R. Iliew, C. Etrich, U. Peschel, F. Lederer, M. Augustin, H.-J. Fuchs, D. Schelle, E.-B. Kley, S. Nolte, A.Tünnermann, "Diffractionless propagation of light in a low-index photonic-crystal film," Appl. Phys. Lett. 85, 5854-5856 (2004).
[3.4] Y. Fink,J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, E. L. Thomas, "A Dielectric Omnidirectional Reflector," Science 282, 1679-1682 (1998).
[3.5] C. Luo, S. G. Johnson, J. D. Joannopoulos, J.B. Pendry, "All-angle negative refraction without negative effective index," Phys. Rev. B. 65, 201104 (2002).
[3.6] H. T. Chien, H. T. Tang, C. H. Kuo, C. C. Chen, , Z. Ye, "Directed diffraction without negative refraction," Phys. Rev. B. 70, 113101(2004).
[3.7] E. Moreno, F. J. García, L. Martín-Moreno, "Enhanced transmission and beaming of light via photonic crystal surface modes," Phys. Rev. B,69, 121402(2004).
[3.8] P. Kramper, M. Agio, C.M. Soukoulis, A. Birner, F. Müller, R. B.Wehrspohn, U. Gösele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width”, Phys.Rev. Lett. 92, 11390(2004).
[3.9] S. K. Morrison, Y. S. Kivshar, "Engineering of directional emission from photonic-crystal waveguides”, Appl. Phys. Lett. 86, 081110(2005).
[3.10] A. Sugitatsu, T. Asano, S. Noda, "Line-defect–waveguide laser integrated with a point defect in a two dimensional photonic crystal slab," Appl. Phys. Lett. 86, 171106(2005).
[4.1] J. Durnin, J. J. Miceli, Jr. , and J. H. Eberly, “Diffraction-free beam, ” Phys. Rev. Lett. 58, 1499-1501 (1987).
[4.2] J. Durnin, “Exact solution for nondiffracting beams I. The scalar theory, ” J. Opt. Soc. Am. A 4, 651-654 (1987).
[4.3] Bahaa E.A. Saleh, Saleh, Malvin Carl Teich.” Fundamentals of Photonics”, New York Wiley, p81 (1991).
[4.4] Y. Lin, W. Seka, J. H. Eberly, H. Huang, and D. L. Brown, “Experimental investigation of Bessel beam characteristics,” Appl. Opt. 31, 2708-2713(1992).