跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳士弘
CHEN, SHI-HONG
論文名稱: 氮化銦鎵半極性奈米量子井螢光光譜分析
指導教授: 賴昆佑
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 48
中文關鍵詞: 螢光光譜氮化銦鎵氧化鋅奈米柱
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來三五族發光材料在製備發光二極體上有廣泛的應用,包含面板,顯示器
    背光模組,醫療元件等。而發光二極體在異質外延層的生長技術一直是影響半導體成
    果的最大挑戰。
    在本研究中,我們以螢光光譜分析半極性{10-11}氮化銦鎵多重量子井的晶格特性。此多重量子井以有機金屬化學氣相沉積法成長於(100)矽基板上,並以氧化鋅奈米
    柱作為緩衝層,以得到{10-11}的半極性磊晶面。
    在螢光光譜的分析中,我們利用變溫、變功率,以及時間解析的方式,來研究此半極性奈米量子井的銦含量分佈、缺陷密度等材料特性。從變溫螢光光譜與變功率的螢光光譜中,此氮化銦鎵量子井充分展示“s形發光曲線” 及“量子史塔克效應”,顯示銦自聚集形成的量子點結構,其內部量子效率約為66%。在時間解析的光譜中,我們發現半極性量子井中的載子周期約0.5 ns,小於傳統極性面的3.7 ns,這是因為氧
    化鋅奈米柱能有效減少差排密度,並形成半極性氮化銦鎵磊晶面,減緩量子史塔克效
    應,因而展現較高的發光效率。


    In recent years, III-nitride compounds exhibit excellent properties in wide applications of light-emitting diodes, displays, backlight modules, medical components, etc. Understanding the crystal properties of InGaN quantum wells is the key step to further improve the performances of nitride-based emitters.
    In this research, we studied nanostructured semipolar {10-11} InGaN/GaN multiple quantum wells (MQW) using temperature-dependent, power-dependent and time-resolve photoluminescence (PL) spectra. The semipolar MQW were grown on (100) Si substrates by metal-organic chemical vapor deposition(MOCVD). To relieve the huge lattice strain between Si and GaN and to attain the semipolar crystal plane, ZnO nanorods were employed as the buffer layer.
    From the results of temperature and power-dependent PL studies, the semipolar MQW display clear S-shape spectra and varied quantum-confined Stark effect (QCSE), indicating a quantum-dot-like structure due to indium segregation. The internal quantum efficiency is estimated to be 66%. From time-resolve PL, the carrier lifetime in the semipolar MQW is around 0.5 ns, much shorter than that (3.7 ns) of the conventional planar polar MQW. The result is attributed to the alleviated strain brought by the ZnO nanorods, as well as the mitigated QCSE.

    論文摘要 1 abstract 2 致謝 3 圖表錄 4 第一章、緒論 1 1.1 前言 1 1.2 氮化物的發光特性………………………………………………………………………………………………… 2 1.3 氮化物奈米量子井的發展與應用………………………………………………………………………….6 1.4 研究動機與章節介紹……………………………………………………………………………………………..8 第二章、實驗基本原理以及儀器設備……………………………………………………………………………….9 2.1 量子史塔克效應…………………………………………………………………………………………………..9 2.2 光致螢光的基本原理與量測系統……………………………………………………………………….11 2.3 光致螢光的進階應用:功率變化、時間解析、溫度變化……………………………………15 2.4 氧化鋅奈米柱的製備與半極性量子井的成長……………………………………………………21 第三章、分析與討論…………………………………………………………………………………………………………23 3.1功率變化:量子史塔克效應…………………………………………………………………………….…….23 3.2 時間解析:量子井內的載子壽命…………………………………………………………………….…...26 3.3 溫度變化:量子井的銦含量變化………………………………………………………………….………29 第四章、結論與未來展望………………………………………………………………………………………………...33 4.1結論………………………………………………………………………………………………………………………33 4.2 未來展望……………………………………………………………………………………………………….…….34 參考文獻…………………………………………………………………………………………………………………………….35 圖目錄 圖1-1發光二極體平衡態示意圖……………………………………………...................2 圖1-2纖鋅礦結構示意圖……………………………………………………………..…5 圖1-3閃鋅礦結構示意圖………………………………………………………………..5 圖1-4不同維度奈米尺寸的吸收光譜圖………………………………………………..7 1-5 量子井結構示意圖…………………………………………………………………..7圖2-1不同情況下壓電效應示意圖…………………………………………………….10 圖2-2量子史塔克效應對載子分布的影響…………………………………………….10 圖2-3螢光產生示意圖………………………………………………………………….12 圖2-4賈布朗斯基電子能態轉換圖…………………………………………………….12 圖2-5 光致螢光量測系統架構圖……………………………………………………....14 圖2-6單光子計數系統紀錄光子示意圖…………………………………………….....17 圖2-7多循環累積光子訊號示意圖………………………………………….................17 圖2-8 變溫螢光譜的溫度與光子能量關係圖…………………………………………18 圖2-9 變溫螢光光譜發光機制示意圖……………………………………………........19 圖2-10 變壓螢光光譜發光機制示意圖………………………….…………………….20 圖2-11 有機金屬化學氣象沉積機台外觀……………………………………..………21 圖2-12 氮化銦鎵多重量子井結構圖…………………………………………………..22 圖2-13 氮化銦鎵量子井發光層………………………………………………………..22 圖 3-1 三層量子井變功率光譜圖……………………………..……………………….23 圖 3-2 五層量子井(淺層發光中心)變功率光譜圖………………………………….....24 圖 3-3 五層量子井(深層發光中心)變功率光譜圖 ………………………….…….…25 圖 3-4 三層量子井載子壽命擬合(淺層發光中心)……………………………………28 圖 3-5三層量子井載子壽命擬合(深層發光中心)…………………………………….28 圖 3-6 五重量子井變溫光譜圖……………………………………………………......29 圖 3-7 三重量子井變溫光譜圖…………………………………………………….….30 圖 3-8 五層量子井溫度與光子能量關係圖………………..……………….………...31 圖 3-9 三層量子井(淺層發光中心)溫度與光子能量關係圖……………….………...31 圖 3-10 三層量子井(深層發光中心)溫度與光子能量關係圖………………………..32 表目錄 表一 氮化物半導體磊晶層常基板比較,取自工研院IEK......................4 表二 多重量子井載子生命週期對比圖.....................................27

    [1]網路資料 : 維基百科,發光二極體平衡態示意圖,取自https://zh.wikipedia.org/wiki/File:Pn-junction-equilibrium.png#filehistory
    [2] Y. Koide, N. Itoh, K. Itoh, N. Sawaki, I. Akasaki. Effect of AlN Buffer Layer on AlGaN/α-Al2O3 Heteroepitaxial Growth by Metalorganic Vapor Phase Epitaxy. Jpn. J. Appl. Phys. 27 1156_(1988)
    [3] I. Akasaki, H. Amano, K. Hiramatsu, and N. Sawaki. Hight efficiency blue LED utilizing GaN film with AlN buffer layer grown by MOVPE. Inst. Phys. Conf. Ser., 91, 633-636 (1988)
    [4]網路資料:維基百科,纖鋅礦結構示意圖,取自http://www.wikiwand.com/zh-tw/%E6%B0%A7%E5%8C%96%E9%8B%85
    [5]網路資料:維基百科,閃鋅礦結構示意圖,取自http://www.wikiwand.com/zh-tw/%E6%B0%A7%E5%8C%96%E9%8B%85
    [6] E. Kuokstis, C. Q. et al. Polarization effects in photoluminescence of - and -plane GaN/AlGaN multiple quantum wells. Appl. Phys. Lett. 81, 4130 (2002)
    [7]網路資料:材料世界網,不同維度奈米尺寸的吸收光譜,取自http://www.materialsnet.com.tw/DocView.aspx?id=8247
    [8] Jasprit Singh. Physics of semiconductors and their heterostructures. Singapore : McGraw-Hill. 1993 .
    [9] Fabio Bernardini , Vincenzo Fiorentini, David Vanderbilt. Spontaneous polarization and piezoelectric constants of III-V nitrides. Phys. Rev. B 56, R10024(R)(1997)
    [10] Fabio Bernardini1 , Vincenzo Fiorentini. Spontaneous versus piezoelectric polarization in III-V nitrides:conceptual aspects and practical consequences. Phys. Stat. sol. (b)216, 391 (1999)
    [11]網路資料:https://theness.com,不同情況下壓電效應示意圖,取自https://theness.com/neurologicablog/index.php/piezoelectric-roads/
    [12]日本上智大學下村研究室,量子史塔克效應對載子分布的影響,http://pweb.cc.sophia.ac.jp/shimolab/qcse.html
    [13]網路資料:www.ledinside.com,螢光產生示意圖,取自https://www.ledinside.com.tw/knowledge/20120525-21281.html
    [14]網路資料:www.olympus-lifescience.com,賈布朗斯基電子能態轉換圖,取自https://www.olympus-lifescience.com/en/microscope-resource /primer /java /jablonski/jabintro/
    [15] J. Mickevičius, M. S. et al.Time-resolved experimental study of carrier lifetime in GaN epilayers. Appl. Phys. Lett. 87, 241918 (2005);
    [16] Lai Wang*, Yuchen Xing, Zhibiao Hao, and Yi Luo. Study on carrier lifetimes in InGaN multi-quantum well with different barriers by time-resolved photoluminescence. Phys. Status Solidi B 252, No. 5, 956–960 (2015)
    [17] Lai Wang*, Yuchen Xing, Zhibiao Hao, and Yi Luo. Study on carrier lifetimes in InGaN multi-quantum well with different barriers by time-resolved photoluminescence. Phys. Status Solidi B 252, No. 5, 956–960 (2015)
    [18]網路資料:www.picoquant.com,單光子計數系統紀錄光子示意圖,取自https://www.picoquant.com/products/category/tcspc-and-time-tagging-modules/picoharp-300-stand-alone-tcspc-module-with-usb-interface#images
    [19]網路資料: www.boselec.com,多循環累積光子訊號示意圖,取自https://www.boselec.com/product-category/photon-counting-applications-techniques/
    [20] X. A. Cao, S. F. LeBoeuf, and L. B. RowlandC. H. Yan and H. Liu. Temperature-dependent emission intensity and energy shift in InGaN/GaN multiple-quantumwell light-emitting diodes. Appl. Phys. Lett. 82, 3614 (2003)
    [21] Petr G. Eliseev, Piotr Perlin, Jinhyun Lee, and Marek Osiński. Blue temperature-induced shift and band-tail emission in InGaN-based light sources. Appl. Phys. Lett. 71, 569 (1997)
    [22] Yong-Hoon Cho, G. H. Gainer, A. J. Fischer, and J. J. SongS. Keller, U. K. Mishra, and S. P. DenBaars. “S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells. Appl. Phys. Lett. 73, 1370 (1998)
    [23] Yong-Hoon Cho, G. H. Gainer, A. J. Fischer, and J. J. SongS. Keller, U. K. Mishra, and S. P. DenBaars.“S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells.Appl. Phys. Lett. 73, 1370 (1998)
    [24] Huining Wang,1 Ziwu Ji. et al. Influence of excitation power and temperature
    on photoluminescence in InGaN/GaN multiple quantum wells. Optics Express Vol. 20, Issue 4, pp. 3932-3940 (2012)
    [25] Young S. Park,1 Christopher C. S. et al. Reduced Stark shift in three-dimensionally confined GaN/AlGaN asymmetric multiquantum Disks. Optical Materials Express. Vol. 5, No. 4 (2015)
    [26] K. Totsuka, M. A. I. Talukder, M. Matsumoto, and M. Tomita. Excitation-power-dependent spectral shift in photoluminescence in dye molecules in strongly scattering optical media. Phys. Rev. B 59, 50(1991)
    [27] Ya-Ju Lee. et al. Study of the Excitation Power Dependent Internal Quantum Efficiency in InGaN/GaN LEDs Grown on Patterned Sapphire Substrate. IEEE Journal of Selected Topics in Quantum Electronics ( Volume: 15, Issue: 4, July-aug. 2009 )

    QR CODE
    :::