| 研究生: |
孔祥仁 Hsieng-jen Kong |
|---|---|
| 論文名稱: |
高功率白光LED封裝之螢光粉特性之研究 Study of phosphor characteristic for high-power white LED package |
| 指導教授: |
孫慶成
Ching-cheng Sun |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 發光二極體 、螢光粉 、封裝 |
| 外文關鍵詞: | Phosphor, LED, Package |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文將探討YAG螢光粉特性,分成散射模型、吸收係數與轉換係數三部份來討論。我們結合米氏散射原理及蒙地卡羅光追跡法來模擬光線在螢光粉膠體內的散射行為,並利用散射模型結合實驗與模擬來分析吸收係數與轉換係數,成功建立螢光粉光學模型。藉由螢光粉模型來分析不同藍光光源對螢光粉吸收效應與轉換能力的影響,將更進一步修正模型之準確性。最後,由於再吸收現象會影響吸收係數與轉換係數,所以我們將由實驗量測之光譜來分析此現象。
In this thesis, we study YAG phosphor characteristic including scattering model, absorption coefficient and conversion efficiency. Mie scattering theory and Monte-Carlo ray tracing are used to describe the scatter of light in the phosphor layer. By fitting absorption coefficient and conversion efficiency of phosphor through experiment and simulation, we have successfully built an optical phosphor model. Furthermore, via using different blue sources to analyze absorption coefficient and conversion efficiency of phosphor, the validity of phosphor model is enhanced. Finally, since re-absorption effect decreases absorption coefficient and conversion efficiency, we analyze this effect by comparing different spectra from experiments.
[1] N. Holonyak, Jr., and S. F. Bevaqua, “Coherent(visible) light emission from Ga(As1–xPx) junctions,” Appl. Phys. Lett. 1, 82-83 (1962).
[2] S. Nakamura and G. Fasol, The Blue Laser Diode: GaN vased light emitters and lasers (Springer, Berlin, 1997).
[3] Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi, “Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material,” United States Patent, US 5998925 (1999).
[4] S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64, 1687-1689 (1994).
[5] J. Y. Tsao, Light emitting diodes (LEDs) for general illumination: An OIDA technology roadmap update 2002 (Optoelectronics Industry Development Association, Washington D.C., 2002).
[6] D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “ Illumination with solid state lighting technology,” IEEE J. Sel. Topics Quantum Electron. 8, 310-320 (2002).
[7] P. Roussel, “Markets and technology needs for UHB-LEDs,” Proc. of SPIE 6797, 679703 (2007).
[8] T. F. McNulty et al., “UV reflector and UV-based light source having reduced UV radiation leakage incorporating the same,” United States Patent, US 6686676 B2 (2004).
[9] A. Zauskas, F. Ivanauskas, R. Vaicekauskas, M. S. Shur, and R. Gaska, “Optimization of mulitichip white solid state lighting source with four or more LEDs,” Proc. of SPIE 4445, 148-155 (2001).
[10] C. C. Yang, C. M. Lin, Y. J. Chen, Y. T. Wu, S. R. Chuang, R. S. Liu, and S. F. Hu, “Highly stable three-band white light from an InGaN-based blue light emitting diode chip precoated with oxynitride green/red phosphors,” Appl. Phys. Lett. 90, 123503 (2007).
[11] Stelur et al., “Phosphor blends for generating white light from near-UV/blue light-emitting devices,” United States Patent, US 6685852 B2 (2004).
[12] D. Jia, W. Jia, and Y. Jia, “Long persistent alkali-earth silicate phosphors doped with Eu2+,Nd3+,” J. Appl. Phys. 101, 023520 (2007).
[13] S. C. Allen and A. J. Steckl, “A nearly ideal phosphor-converted white light-emitting diode,” J. Appl. Phys. 92, 143309 (2008).
[14] A. Zukauskas, Introduction to Solid-State Lighting (John Wiley & Sons, NewYork, 2002).
[15] E. F. Schubert, Light Emitting Diodes (Cambridge University Press, Cambridge, 2003).
[16] 劉如熹,白光發光二極體用螢光粉最新發展,LED固態照明研討會論文集,中華民國九十七年。
[17] N. R. Taskar, R. N. Bhargava, J. Barone, V. Chhabra, V. Chabra, D. Dorman, A. Ekimov, S. Herko, and B. Kulkarni, “Quantum-confined-atom-based nanophosphors for solid state lighting,” Proc. of SPIE 5187, 133-141 (2004).
[18] R. Mueller-Mach, G. Mueller, M. Krames, and T. Trottier, “High-power phosphor-converted light-emitting diodes based on III- Nitrides,” IEEE J. Sel. Topics Quantum Electron. 8, 339-345 (2002).
[19] R. Mueller-Mach, G. O. Mueller, and M. R. Krames, “Phosphor materials and combinations for illumination-grade white pcLEDs,” Proc. of SPIE 5187, 115-122 (2004).
[20] Breault Research Organization, http://www.breault.com/
[21] D. Toublanc, “Henyey-Greenstein and Mie phase functions in Monte Carlo radiative transfer computations,” Appl. Opt. 35, 3270-3274 (1996).
[22] C. F. Boren and D. R. Huffmarn, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
[23] J. P. Chevaillier, J. Fabre, and P. Hamelin, “Forward scattered light intensities by a sphere located anywhere in a Gaussian beam,” Appl. Opt. 25, 1222-1225 (1986).
[24] 何信穎,白光LED之YAG螢光粉光學模型之研究,國立中央大學光電所碩士論文,中華民國九十六年。
[25] GRMSTONE, http://socrates.berkeley.edu/~eps2/wisc/ri.html
[26] H. Menkara, B. K. Wagner, and C. J. Summers, “Enhanced performance of solid state lighting phosphors,” Proc. of SPIE 6669, 66690L (2007).
[27] C. C. Chang, R. Chern, C. C. Chang, C. Chu, J. Y. Chi, J. Su, I. M. Chan, and J. T. Wang, “Monte Carlo simulation of optical properties of phosphor-screened ultraviolet light in a white light-emitting device,” Jpn. J. Appl. Phys. 44, 6056-6061 (2005).
[28] M. Kerker, H. Chew, P. J. McNulty, J. P. Kratohvil, D. D. Cooke, M. Sculley, and M. P. Lee, “Light scattering and fluorescence by small particles having internal structure,” J. Histochem. Cytochem. 27, 250-263 (1979).
[29] Q. Fu and W. Sun, “Mie theory for light scattering by a spherical particle in an absorbing medium,” Appl. Opt. 40, 1354-1361 (2001).
[30] I. W. Sudiarta and P. Chylek, “Mie-scattering formalism for spherical particles embedded in an absorbing medium,” J. Opt. Soc. Am. A 18, 1275-1278 (2001).
[31] Á. Borbély and S. G. Johnson, “Performance of phosphor-coated light-emitting diode optics in ray-trace simulations,” Opt. Eng. 44, 111308 (2005).
[32] D. L. MacAdam, Spectrophotometry in Color Measurement, (Springer, Berlin, 1981).
[33] C. C. Sun, T. X. Lee, S. H. Ma, Y. L. Lee, and S. M. Huang, “Precise optical modeling for LED lighting verified by cross correlation in the midfield region,” Opt. Lett. 31, 2193-2195 (2006).
[34] Cree EZ700, EZ1000, http://www.cree.com/
[35] Y. Q. Li, J. E. J. van Steen, J. W. H. van Krevel, G. Botty, A. C. A. Delsing, F. J. DiSalvo, G. de With, and H. T. Hintzen, “Luminescence properties of red-emitting M2Si5N8:Eu2+(M = Ca, Sr, Ba) LED conversion phosphors,” J. Alloys Compd. 417, 273–279 (2006).
[36] R. Mueller-Mach, G. O. Mueller, and M. R. Krames, “Phosphors materials and combinations for illumination grade white pcLED,” Proc. of SPIE 5187, 115-122 (2004).
[37] J. Hernandez-Andres, R. L. Lee, and J. Romero, “Calculating correlated color temperatures across the entire gamut of daylight and skylight chromaticities,” Appl. Opt. 38, 5703-5709 (1999).