跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳承翰
Cheng-Han Wu
論文名稱: Search for a Higgs boson decaying into \gamma^*\gamma \rightarrow ee\gamma with low dilepton mass in pp collisions at \sqrt{13} \sqrt{13} = 13 TeV
指導教授: 郭家銘
Chia-Ming Kuo
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 122
中文關鍵詞: 希格斯粒子虛光子電子對
外文關鍵詞: Higgs boson, virtual photon, electron pair
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此篇論文進行了一項尋找希格斯玻色子衰變為一個光子和一個虛光子
    的研究。物理分析聚焦於虛光子內部轉換為一對重建質量小於五百億電子
    伏特(GeV)的正負電子對。本研究所使用的數據由CMS探測器在LHC上
    的質子-質子碰撞中收集。其對撞的中心質心能量為13兆電子伏特(TeV)。
    在完整的Run2實驗數據擷取期間,CMS探測器收集到總亮度為為138 fb^{-1} 的數據。事件選擇包含了判定該事件具有來自低質量的虛光子的正負電子對,
    隨後在電磁量能器中合併為一個簇射。選擇一個合併的正負電子對和一個
    高橫動量的光子是本研究感興趣事件的主要標準。此研究顯示在假設希格
    斯玻色子質量為125 GeV的條件下,預測之信號強度上限在95%的信心水
    準下為4.78^{+2.23}_{-1.51}倍的標準模型預測且預期的中位數顯著性為0.41個標準差。


    A search is conducted for the decay of a Higgs boson into a real and a virtual photon. In this analysis, particular attention is given to the internal conversion of the virtual photon into an electron pair with an invariant mass mee < 50 GeV. The data utilized for this study was recorded by the CMS experiment at the LHC from proton-proton collisions with a center-of-mass energy of 13 TeV during the full Run2 period, corresponding to an integrated luminosity of 138 fb^{−1}. The selection involves identifying events that exhibit a collimated electron pair originating
    from a low-mass \gamma^*, which subsequently merges into a single cluster at the electro-magnetic calorimeter. This merged electron, along with a high momentum photon, are the primary criteria for selecting events of interest. The expected limit at 95% confidence level (CL) on the signal strength is estimated to be 4.78+2.23−1.51 times the prediction of the Standard Model (SM) by assuming the mass of the Higgs boson
    is 125 GeV. Additionally, the median expected significance at mH = 125 GeV is determined to be 0.41\sigma.

    1 Introduction 1 1.1 StandardModel............................... 1 1.2 Higgsmechanism.............................. 5 1.3 Higgsproductionsanddecays ...................... 10 1.4 TherareHiggsdecayH→γ∗γ→eeγ.................. 13 1.4.1 Overview .............................. 13 1.4.2 Featuresofthedecay........................ 15 1.4.3 Background composition ..................... 16 1.4.4 PreviousresultsfromATLASandCMS . . . . . . . . . . . . . 18 2 Experimental apparatus 19 2.1 LargeHadronCollider ........................... 19 2.2 CompactMuonSolenoid.......................... 20 3 Analysis procedures 23 3.1 Dataandsimulatedsamples........................ 23 3.1.1 Datasample............................. 23 3.1.2 Simulatedsamples ......................... 23 3.2 Trigger .................................... 27 3.2.1 ThechoiceoftheHLT ....................... 28 3.2.2 HLTefficiencymeasurements................... 29 3.3 Objectreconstructionandidentification . . . . . . . . . . . . . . . . . 36 3.3.1 Electron ............................... 36 3.3.2 Photon................................ 64 3.3.3 Jets.................................. 68 3.4 Eventselection................................ 71 3.5 Eventcategorization ............................ 71 3.6 Backgroundandsignalmodelings .................... 75 3.6.1 Nonresonantbackgroundmodeling ............... 75 3.6.2 Signalmodeling........................... 79 3.7 Uncertainties................................. 88 3.7.1 Theoreticaluncertainties...................... 88 3.7.2 Signalnormalizationuncertainties . . . . . . . . . . . . . . . . 88 3.7.3 Signalshapeuncertainties..................... 90 3.7.4 Backgroundshapeuncertainties ................. 90 4 Results 91 4.1 Asymptoticlimitandsignificance..................... 91 4.2 Future plans................................. 93 4.3 Conclusions ................................. 94 A Input features of merged MVA ID 95 A.1 ECALBarrel................................. 95 A.2 ECALEndcap................................ 99 B Signal modelings Bibliography 103 109

    [1] Serguei Chatrchyan et al. Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B, 716:30–61, 2012.
    [2] GeorgesAadetal.ObservationofanewparticleinthesearchfortheStandard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B, 716:1– 29, 2012.
    [3] John F. Donoghue, Eugene Golowich, and Barry R. Holstein. Dynamics of the Standard Model. Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology. Cambridge University Press, 2 edition, 2014.
    [4] Jeffrey Goldstone, Abdus Salam, and Steven Weinberg. Broken symmetries. Phys. Rev., 127:965–970, Aug 1962.
    [5] LHC Higgs Cross Section Working Group. https://twiki.cern.ch/twiki/ bin/view/LHCPhysics/LHCHWGCrossSectionsFigures?redirectedfrom= LHCPhysics.LHCHXSWGCrossSectionsFigures#Higgs_production_cross_ sections.
    [6] Yi Sun, Hao-Ran Chang, and Dao-Neng Gao. Higgs decays to gamma l+ l- in the standard model. JHEP, 05:061, 2013.
    [7] MarcelaCarena,IanLow,andCarlosE.M.Wagner.Implicationsofamodified higgs to diphoton decay width. Journal of High Energy Physics, 2012(8):60, Aug 2012.
    [8] Chian-Shu Chen, Chao-Qiang Geng, Da Huang, and Lu-Hsing Tsai. New scalar contributions to h → zγ. Phys. Rev. D, 87:075019, Apr 2013.
    [9] Ian Low, Joseph Lykken, and Gabe Shaughnessy. Singlet scalars as higgs bo- son imposters at the large hadron collider. Phys. Rev. D, 84:035027, Aug 2011.
    [10] MartinBauer,MatthiasNeubert,andAndreaThamm.Lhcasanaxionfactory: Probing an axion explanation for (g − 2)μ with exotic higgs decays. Phys. Rev. Lett., 119:031802, Jul 2017.
    [11] AlexanderYu.KorchinandVladimirA.Kovalchuk.Angulardistributionand forward–backward asymmetry of the higgs-boson decay to photon and lep- ton pair. The European Physical Journal C, 74(11):3141, Nov 2014.
    [12] S. Dawson and P. P. Giardino. Higgs decays to zz and zγ in the standard model effective field theory: An nlo analysis. Phys. Rev. D, 97:093003, May 2018.
    [13] Vardan Khachatryan et al. Search for a Higgs boson decaying into γ∗γ → llγ with low dilepton mass in pp collisions at √s = 8 TeV. Phys. Lett. B, 753:341– 362, 2016.
    [14] Andrey Pozdnyakov. Search for the Higgs Boson Decays to a Photon and Two Leptons with Low Dilepton Invariant Mass. PhD thesis, Northwestern U. (main), 2015.
    [15] Georges Aad et al. Evidence for Higgs boson decays to a low-mass dilepton system and a photon in pp collisions at √s = 13 TeV with the ATLAS detector. 3 2021.
    [16] Jorg Wenninger. The lhc collider. Comptes Rendus Physique, 16(4):347–355, 2015. Highlights of the LHC run 1 / Résultats marquants de la première péri- ode d’exploitation du GCH.
    [17] Vyacheslav Klyukhin. Design and description of the CMS magnetic system model. Symmetry, 13(6):1052, jun 2021.
    [18] CMS Luminosity - Public Results.
    [19] Tai Sakuma and Thomas McCauley. Detector and event visualization with SketchUp at the CMS experiment. Technical Report CMS-CR-2013-379. arXiv:1311.4942, CERN, Geneva, Oct 2013. Comments: 5 pages, 6 figures, Proceedings for CHEP 2013, 20th International Conference on Computing in High Energy and Nuclear Physics.
    [20] The CMS Collaboration. Description and performance of track and primary- vertex reconstruction with the CMS tracker. Journal of Instrumentation, 9(10):P10009–P10009, oct 2014.
    [21] CMS Collaboration. Performance and operation of the CMS electromagnetic calorimeter. Journal of Instrumentation, 5(03):T03010–T03010, mar 2010.
    [22] E. Tournefier. The preshower detector of cms at lhc. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 461(1):355–360, 2001. 8th Pisa Meeting on Advanced Detectors.
    [23] Torbjorn Sjöstrand, Stephen Mrenna, and Peter Z. Skands. A brief introduc- tion to PYTHIA 8.1. Comput. Phys. Commun., 178:852, 2008.
    [24] TorbjörnSjöstrand,StefanAsk,JesperR.Christiansen,RichardCorke,Nishita Desai, Philip Ilten, Stephen Mrenna, Stefan Prestel, Christine O. Rasmussen, and Peter Z. Skands. An introduction to PYTHIA 8.2. Comput. Phys. Commun., 191:159, 2015.
    [25] D. de Florian et al. Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector. 2016.
    [26] John M. Campbell and R.K. Ellis. Mcfm for the tevatron and the lhc. Nuclear Physics B - Proceedings Supplements, 205-206:10 – 15, 2010. Loops and Legs in Quantum Field Theory.
    [27] CMS collaboration et al. Electron and photon reconstruction and identifica- tion with the cms experiment at the cern lhc. arXiv preprint arXiv:2012.06888, 2020.
    [28] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. CoRR, abs/1603.02754, 2016.
    [29] A. Bodek, A. van Dyne, J. Y. Han, W. Sakumoto, and A. Strelnikov. Extract- ing muon momentum xcale corrections for hadron collider experiments. Eur. Phys. J., C72:2194, 2012.
    [30] ShervinNourbakhsh.MeasurementofthemassoftheHiggsBosoninthetwo photon decay channel with the CMS experiment., 2013.
    [31] Jan Therhaag. TMVA Toolkit for multivariate data analysis in ROOT. PoS, ICHEP2010:510, 2010.
    [32] Jet algorithms performance in 13 TeV data. 2017.
    [33] P.D. Dauncey, M. Kenzie, N. Wardle, and G.J. Davies. Handling uncertainties in background shapes: the discrete profiling method. Journal of Instrumentation, 10(04):P04015–P04015, apr 2015.
    [34] Reweighting recipe to emulate Level 1 ECAL and Muon prefiring. https: //twiki.cern.ch/twiki/bin/viewauth/CMS/L1PrefiringWeightRecipe.

    QR CODE
    :::