跳到主要內容

簡易檢索 / 詳目顯示

研究生: 劉文雄
Wen-Hsiung Liu
論文名稱: 矽晶圓上具有隔離氧化層非晶質薄膜發光二極體之光電特性
Optoelectronic Characteristics of SiO2-Isolated Amorphous TFLEDs on c-Si Wafer
指導教授: 洪志旺
Jyh-Wong Hong
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 90
語文別: 英文
論文頁數: 74
中文關鍵詞: 薄膜發光二極體非晶質矽晶圓氧化隔離層
外文關鍵詞: TFLEDs, c-Si, SiO2-Isolated, Amorphous, a-SiC:H, a-SiN:H
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討的主題是在n-型矽晶圓上研製具有隔離氧化層的非晶碳化矽氫(a-SiC:H)、非晶氮化矽氫(a-SiN:H) 和電壓調色的非晶碳(氮)化矽氫[a-SiC(N):H]等n-i-p薄膜發光二極體,並量測及分析其光電特性。這些元件在n層及p層區域均分別採用組成摻雜梯度能隙(composition-dopant-graded gap)結構,以增加載子注入效率,提升元件的發光亮度、降低元件的操作電壓。在元件製程方面,利用在陰極附加不銹鋼濾網的電漿助長化學氣相沈積(PECVD)系統,以減少薄膜在沈積時遭電漿轟擊所造成的傷害,故可獲得品質較佳的非晶薄膜,並以最佳化退火製程,改善薄膜發光二極體的光電特性。所完成的非晶碳化矽氫(a-SiC:H) n-i-p 薄膜發光二極體的元件發光亮度在電流密度等於600 mA/cm2時為8100 cd/m2,發光臨限電壓值為19.1 V,電激發光(EL)頻譜峰值波長為600 nm,。而另一非晶氮化矽氫(a-SiN:H) n-i-p薄膜發光二極體的電激發光(EL)頻譜峰值波長為528 nm,發光臨限電壓值為15.4 V,,元件發光亮度在電流密度等於300 mA/cm2時為370 cd/m2。而電壓調色的非晶碳(氮)化矽氫[a-SiC(N):H] 薄膜發光二極體,在不同的偏壓下,電激發光(EL)頻譜峰值波長會在565 nm與670 nm間移動。


    In order to investigate the feasibility of fabricating Si-based visible light-emitting diodes (LEDs) with common well-developed silicon processing technology, the SiO2-isolated n [phosphorous-doped hydrogenated amorphous silicon (n-a-Si:H) ] - i [intrinsic hydrogenated amorphous silicon-carbon (i-a-SiC:H) or intrinsic hydrogenated amorphous silicon-nitride (i-a-SiN:H)] - p [boron-doped hydrogenated amorphous silicon (p-a-Si:H)] thin-film LEDs (TFLEDs) were fabricated on n-type c-Si wafers. These SiO2-isolated TFLEDs would emit red-orange, green-white light and even light with voltage-tunable color.
    The red-orange TFLED revealed a highest brightness of 8100 cd/m2 at an injection current density of 600 mA/cm2, an electroluminescence (EL) peak wavelength at 600 nm, and an EL threshold voltage = 19.1 V. The green-white TFLED had a brightness of 370 cd/m2 at an injection current density of 300 mA/cm2, an EL peak wavelength at 528 nm, and an EL threshold voltage = 15.4 V. The voltage-tunable TFLEDs had the EL peak wavelength ranged from 565 nm to 670 nm at different applied voltages.
    The experimental results demonstrated the feasibility of developing Si-based visible light-emitting devices on c-Si substrate.

    Abstract.....................................................Ⅲ Table Captions...............................................Ⅳ Figure Captions..............................................Ⅴ Chapter 1 INTRODUTION.......................................1 Chapter 2 EXPERIMENTAL PROCEDURES...........................5 2.1 Preparations of Various Thin-Films.......................5 2.1.1 Deposition System....................................5 2.1.2 Film Depositions.....................................7 2.2 Device Synopsis.........................................13 2.3 Fabrications of SiO2-Isolated TFLEDs on c-Si............17 2.4 Measurement Techniques..................................28 2.4.1 Optical Bandgap of Amorphous film...................28 2.4.2 EL Intensity and Brightness.........................28 2.4.3 EL Spectrum.........................................28 Chapter 3 RESULTS AND DISCUSSIONS..........................33 3.1 Red-Orange TFLED (Device 1)..........................33 3.2 Green-(Blue)-White TFLED (Device 2)..................33 3.3 Voltage-Tunable TFLEDs (Devices 3 and 4).............34 3.4 Characteristics of the Finished TFLEDs...............38 3.4.1 Current-Conduction Mechanism.....................38 3.4.1.1 Ideality Factor..............................38 3.4.1.2 Low Electric-Field Region....................38 3.4.1.3 High Electric-Field Region...................40 3.4.2 B-V Characteristics..............................43 3.5 EL Spectra...........................................43 3.6 Effects of Annealing....................................55 Chapter 4 CONCLUSIONS......................................68 REFERENCES..................................................70

    [1] W. E. Spear and P. G. LeComber, “Substitutional Doping of Amorphous Silicon,” Solid State Commun. 17, pp.1193, 1975
    [2] D. E. Carlson and C. R. Wronski: Appl. Phys. Lett. 28, pp.671, 1976
    [3] N. F. Mott and E. A. Davis, “ Electronic Processes in Non-Crystalline Materials,” 2nd ed., Chap. 6, Oxford University Press, pp. 288, 1979.
    [4] J. I. Pankove and D. E. Carlson, “ Electroluminescence in Amorphouse Silicon,” Appl. Phys. Lett., Vol.29, pp.620, 1976.
    [5] R. A. Street, C. Tsang, and J. C. Knight, Proceedings of International Conference Phys. Semiconductors, Edingburgh, pp. 1139, 1978.
    [6] T. S. Nashashibi, I. G. Austin, T. M. Searle, R. A. Gibson, W. E. Spear and P. G. LeComber, “Electroluminescence in Amorphous Silicon p-i-n Junction,” Phil. Mag., Vol. B45, pp.553, 1982.
    [7] K. S. Lim, M. Konagai, and K. Takahashi, “Observation of Electroluminescence from Amorphous Silicon Solar Cells at Room Temperature,” Jpn. J. Appl. Phys., Vol.21, pp. L473, 1982.
    [8] A. J. Rhodes, P. K. Bhat, I. G. Austin, T. M. Searle, and R. A. Gibson, J. Non-Cryst. Solids., Vol.59 and 60, pp.365, 1983.
    [9] D. Kruangam, T. Endo, W. Guang-Pu, H. Okamoto, and Y. Hamakawa, “ Visble-Light Injection-Electroluminescent a-SiC:H p-i-n Diode,” Jpn. J. Appl. Phys., Vol. 24, No. 10, pp. L806-L808, 1985.
    [10] D. Kruangam, T. Endo, M. Deguchi, W. Guang-Pu, H. Okamoto, and Y. Hamakawa “ Amorphous Silicon-Carbide Thin-Film Light Emitting Diode,” Optoelectronics Devices and Technologies, Vol. 1, No. 1, pp. 67-84, 1986.
    [11] D. Kruangam, M. Deguchi, T. Toyama, H. Okamoto, and Y. Hamakawa, “ Carrier Injection Mechanism in a-SiC:H p-i-n Junction Thin-Film LED,” IEEE Trans. Electron Devices, Vol. 35, No. 7, pp.957, 1988.
    [12] S. M. Paasche, T. Toyama, H. Okamoto, and Y. Hamakawa, “Amorphous-SiC Thin Film p-i-n Light-Emitting Diode Using Amorphous-SiN Hot-Carrier Tunneling Injection Layers,” IEEE Trans. Electron Devices, Vol. 36, No.12, pp. 2895, 1989.
    [13] W. Boonkosuum, D. Kruangam, and S. Panykeow, “Visible-Light Amorphous Silicon-Nitride Thin-Film Light Emitting Diode” Mat. Res. Soc. Symp. Proc. Vol. 297. P1005-1010, (1993)
    [14] D. C. Chung, ”Optoelectronic Characteristics of Green-Blue-White a-SiN:H-based p-i-n Thin-Film Light-Emitting Diodes,” M. S. Thesis, NCU, Taiwan, R.O.C., 1998.
    [15] N. Koshida, and H. Koyama, ”Visible Electroluminescence from Porous Silicon”, Appl. Phis. Lett., 60, (3), pp347-440, 1992.
    [16] D. B. Geohegan, A. A. Puretzky, G. Duscher, and S. J. Pennycook, “Photoluminescence from Gas-suspended SiOx Nanoparticles Synthesized by Laser Ablation,” Appl. Phis. Lett., 72, (4), pp.438-440, 1998.
    [17] M. Matsuoka, and S. Tohno, “Electroluminescence of Erbium-Doped Silicon Films as Grown by Ion Beam Epitaxy,” Appl. Phis. Lett.., 71, (1), pp.96-98, 1999.
    [18] M. Garter, J. Scofield, R. Birhahn, and A. J. Steckl, “Visible and Infrared Rare-Earth-Activated Eletroluminescence from Indium Tin Oxide SchottkyDdiodes to GaN:Er on Si,” Appl. Phis Lett., 74, (2), pp.182-184,1999.
    [19] C. W. Liu, M. H. Chen, M. L. Chen, I. C. Lin, and C. F. Lin, “Room-temperature Eletroluminescence from Electron-Hole Plasmas in the Metal-Oxide-Silicon Tunneling Diodes,” Appl. Phis. Lett., 76, (12), pp.1516-1518, 2000.
    [20] S. M. Passche, T. Toyama, H. Okamoto, and Y. Hamakawa, ”Amorphous-SiC Thin Film p-i-n Light-Emitting Diode Using Amouphous-SiN Hot-Carrier Tunneling Injection Layers,” IEEE Trans. Electron Devices, Vol. 36, No.12, pp.2895, 1989.
    [21] J. Y. Chen, “ The Effect of Graded-Gap and Barrier Layer Structure on the Electroluminescence Properties of a-SiC:H p-i-n Thin-Film Light Emitting Diode,” M. S. Thesis, NCU, Taiwan, R.O.C., 1992.
    [22] J. K. Chen, “ Characteristics of a-SiC:H Double Composition-Dopant-Graded Gap p-i-n Thin-Film Light-Emitting Diodes,” M. S. Thesis, NCU, Taiwan, R.O.C., 1995.
    [23] J. C. Wang, “ Improving the Characteristics of Amorphous Metal-Semiconductor-Metal Photodetectors (MSM-PDs)” M. S. Thesis, NCU, Taiwan, R.O.C., 1996.
    [24] Yen-Ann Chen, Chen-Fu Chiou, Wen-Chin Tsay, Li-Hong Laih, Jyh-Wong Hong, and Chun-Yen Chaug ” Optoelectronic Characteristics of a-SiC:H-Based P-I-N Thin-Film Light-Emitting Diodes with Low-Resistance and High-Reflectance N+-a-SiCGe:H Layer,” IEEE Trans. on Electronic Devices, Vol.44, No.9, pp.1360-1366 , 1997
    [25] R. A. Street, J. C. Knights, and D. K. Biegelsen, “Luminescence Studies of Plasma-Deposited Hydrogenated Silicon,” Phys. Rev. B, Vol. 18, No. 4, pp. 1880-1891, 1978.
    [26] Yen-Ann Chen, Ming-Lung Hsu, Li-Hong Laih, Jyh-Wong Hong, and Chun-Yen Chaug,“ Characteristics of SiC-based Thin-Film LED Fabricated Using Plasma-Enhanced CVD System with Stainless Steel Mesh,” Electronics Letters 22nd, Vol. 35, No. 15,1999.
    [27] J. W. Lee, S. H. Hur, and K. S. Lim,” Hydrogen Passivation Effects on Performance of Visible Thin-Film Light-Emitting Diodes (TFLEDs),” IEDM, 825-828, 1995.
    [28] M. S. Haque, H. A. Naseem, W. D. Brown, and S. S. Ang, “ Hydrogenated Amorphous Silicon/Aluminum Interaction at Low Temperatures, “ Mat. Res. Soc. Symp. Proc., Vol. 258, pp. 1037-1042, 1992.
    [29] J. Tanc, Amorphous and Liquid Semiconductors, chap. 5, Plenum Press, pp. 175, 1974.
    [30] D. Kruangam, “Amorphous and Microcrystalline Semiconductor Devices : Optoelectronic Devices,” (Jerzy Kanicki, ed.), chap. 6, Artech House, 1991.
    [31] J. W. Hong, N. F. Shin, T. S. Jen, S. L. Ning and C. Y. Chang, ”Graded-gap a-SiC:H p-i-n Thin-Film Light Emitting Diodes,” IEEE Electron Device Lett., Vol. 13, No. 7, pp. 375-377, 1992.
    [32] M. A. Lampert and P. Mark, “ Current Injection in Solids,” Chap. 2, 4, 5, Academic Press, 1970.
    [33] D. Kruangam, M. Deguchi, T. Toyama, H. Okamoto, and Y. Hamakawa,” Carrier Injection Mechanism in a-SiC:H p-i-n Junction Thin-Film LED,” IEEE Trans. Electron Devices, Vol. 35, No. 7, pp. 957, 1988.
    [34] C. P. Huang, “Optoeletronic Characteristics of A-SiH:H-Based TFLEDs and Organic LEDs,” M. S. Thesis, NCU, Taiwan, R.O.C., 2000.
    [35] D. Kruangam, T. Toyama, Y. Hattori, M. Deguchi, H. Okamoto and Y. Hamakawa, “ Improvement of Carrier Injection Efficiency in a-SiC:H p-i-n LED Using Highly-Conductive Wide-Gap p, n type a-SiC prepared by ECR CVD,” J. Non-Cryst. Solids, Vols. 97&98, pp. 2 93-296, 1987.

    QR CODE
    :::