| 研究生: |
陳俊任 Chun-Jen Chen |
|---|---|
| 論文名稱: |
以固態反應法在氧化鋁單晶表面生長鎂鋁尖晶石磊晶薄膜 The growth of an epitaxial Mg-Al spinel layer on sapphire by solid-state reactions |
| 指導教授: |
陳志臣
Jyh-Chen Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 54 |
| 中文關鍵詞: | 磊晶薄膜 、固態反應法 、氧化鋁 、鎂鋁尖晶石 |
| 外文關鍵詞: | Mg-Al spinel, epitaxy, sapphire, solid-state reaction |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要是以固態反應法在藍寶石表面生長鎂鋁尖晶石薄膜,利用
物理汽相沈積(PVD)及熱處理製程,生長出具優先取向性之磊晶薄膜,
並透過後續檢測等技術,確定其薄膜的成分與結構等性質。同時,藉由熱
處理的製程參數之控制,逐步探討參數條件如何影響表面薄膜的成分與性
質改變。
在實驗結果可以發現,反應薄膜在不同的熱處理溫度下,會有不同的
反應速率,並隨著溫度的升高而增加;並且在氧化鎂未反應完全之前,尖
晶石生成物之反應層厚度也會隨著熱處理時間的增加而增加,呈現線性的
變化趨勢。此外,在薄膜的磊晶方向上,由XRD 實驗得知在不同軸向的
氧化鋁基板,會形成不同方向性的尖晶石磊晶層,並發現(hhh)方向之
Mg-Al spinel 容易生長在C軸及A軸氧化鋁上,而(hh0)方向之Mg-Al spinel
則易生長在M 軸氧化鋁基板上。同時透過平面上方向的量測與表面結構的
觀察,可以獲得spine 磊晶層與sapphire 基板間in-plane 方向上的關係。另
外也可以確定的是spinel(hhh)生長的結構面為三方對稱形紋路,且表面
的對稱結構之方位與原子排列結構的方向有關。透過此篇論文在氧化鋁基
板上生成鎂鋁尖晶石所做的各項性質探討,可以作為生長其他spinel 結構
之磊晶薄膜的參考依據。
In this study, an epitaxial Mg-Al spinel layer was successfully grown on a
sapphire single crystal surface using solid-state reactions. The processes of
solid-state reactions with PVD and heat treatment were applied to grow
epitaxial layer with preferred orientation. And the layer composition and
structure can be confirmed by the further analyses. Through the controlling of
the heat treatment parameters, the variation of compositions and properties
influenced by different conditions on surface layer had been discussed.
From the experiment results, reaction layer showed different reaction rate
with various heat treatment, and it was proportion to the temperature and
duration. In additional, the orientation of epitaxial Mg-Al spinel layer would
depend on the cut of sapphire substrate. The hhh-type orientated spinel layer
preferred to grow on C- and A-plane sapphire, and the hh0-type orientated
spinel layer preferred to grow on M-plane sapphire. Simultaneously, the
in-plane orientation relationship between spinel epitaxial layer and sapphire
substrate could be obtained by φ scan. The morphology of the epitaxial spinel
layer surface will present a particular three-fold symmetrical structure by scanning
electron microscope. The model of atomic arrangement was employed to explain
the relationship between the surface morphology of spinel and its miller index.
參考文獻
1. C. B. Carter, “The growth of spinel into Al2O3”, Philosophical Magazine A,
Vol.52, No.2 (1985) pp.207.
2. L. Navias, “Preperation and properties of spinel made by vapor transport
and diffusion in the system MgO-Al2O3”, Journal of the American Ceramic
Society, Vol.44 (1961) pp.434.
3. H. Sieber, D. Hesse, X. pan, St. Senz, J. Heydenreich, “TEM
investigations of spinel-forming solid state reactions: reaction mechanism,
film orientation, and interface structure durning MgAl2O4 formation on
MgO (001) and Al2O3 (11.2) single crystal substrates”, Zeitchrift fur
anorganishe und allgemeine Chemie, Vol.622 (1996) pp.1658.
4. G. Gusmano, G. Montesperelli, P. Nunziante, E. Traversa, G. Mattogno,
“Study of the conduction mechanism of MgAl2O4 at different
environmental humidities”, Electrochimica Acta, Vol.38 (1993) pp.2617.
5. G. Gusmano, G. Montesperelli, E. Traversa, and G. Mattogno,
“Microstructure and electrical properties of MgAl2O4 thin-films for
humidity sensing”, Journal of the American Ceramic Society, Vol.76 (1993)
pp.743.
6. X. D. Wu, A. Inam, M. S. Hedge, B. Wilkens, C. C. Chang, D.M.Hwang, L.
Nazer, T. Venkatesan, “High critical currents in epitaxial YBa2Cu3O7-x thin
films on silicon with buffer layers”, Applied Physics Letters, Vol.54 (1989)
pp.754.
7. D. M. Hwang, R. Ramesh, C. Y. Chen, X. D. Wu, A. Inam, M. S. Hedge, B.
Wilkens, C. C. Chang, L. Nazar, T. Venkatesan, S. Miura, S. Matsubara, Y.
32
Miyasaka, N. Shohata, “Epitaxial relations between in situ
superconducting YBa2Cu3O7-x thin films and BaTiO3/MgAl2O4/Si
substrates”, Journal of Applied Physics, Vol.68 (1990) pp.1772.
8. 余樹楨, “晶體之結構與性質” (民國85 年11 月) 國立編譯館.
9. E. A. Marguire Jr., R. L. Gentilman, “Press forging small domes of spinel”,
American Ceramic Society Bulletin, Vol.60 (1981) pp.255.
10. D. W. Roy, J. L. Hastert, “Polycrystalline MgAl2O4 spinel for high
temperature windows”, Ceramic Engineering and Science Proceedings,
Vol.4 (1983) pp.502.
11. P. Kumar, K. H. Sandhage, “The fabrication of near net-shaped spinel
bodies by the oxidative transformation of Mg/Al2O3 precursors”, Journal
of Materials Research, Vol.13 (1998) pp.3423.
12. C. J. Ting, H. Y. Lu, “Defect reactions and the controlling mechanism in
the sintering of magnesium aluminate spinel”, Journal of the American
Ceramic Society, Vol.82, No.4 (1999) pp.841.
13. R. E. Carter, “Mechanism of solid-state reaction between magnesium
oxide and alumina oxide and between magnesium oxide and ferric oxide”,
Journal of the American Ceramic Society, Vol.44, No.3 (1961) pp.116.
14. W. P. Whitney II, V. S. Stubican, “Interdiffusion studies in the system
MgO-Al2O3”, The Journal of Physics and Chemistry of Solids, Vol.32
(1971) pp.305.
15. P. Zhang, T. Debroy, S. Seetharaman, “Interdiffusion in the MgO-Al2O3
spinel with or without some dopants”, Metallurgical and Materials
Transactions. A, Vol.27A (1996) pp.2105.
16. K. J. D. Mackenzie, M. J. Ryan, “Effect of electric fields on solid-state
reactions between oxides”, Journal of Materials Science, Vol.16 (1981)
33
pp.579.
17. E. B. Watson, J. D. Price, “Kinetics of the reaction MgO + Al2O3 →
MgAl2O4 and Al-Mg interdiffusion in spinel at 1200 to 2000℃ and 1.0 to
4.0 GPa”, Geochimica et Cosmochimmica Acta, Vol.66, No.12 (2002)
pp.2123.
18. R. C. Rossi, R. M. Fulrath, “Epitaxial growth of spinel by reaction in the
solid state”, Journal of the American Ceramic Society, Vol.64 (1963)
pp.368.
19. D. X. Li, P. Pirouz, A. H. Heuer, S. Yadavalla, C. P. Flynn, “A
high-resolution electron microscopy study MgO/Al2O3 interfaces and
MgAl2O4 spinel formation”, Philosophical Magazine A, Vol.65, No.2
(1992) pp.406.
20. P. Kumar, S. A. Dregia, K. H. Sandhage, “Epitaxial growth of magnesia
and spinel on sapphire during incongruent reduction in molten
magnesium”, Journal of Materials Research, Vol.14 (1999) pp.3312.
21. R. E. Carter, W. L. Roth, C. A. Julien, “Orientation relation between a
hematite precipitate and its ferrite host”, Journal of the American Ceramic
Society, Vol.42 (1959) pp.533.
22. P. A. Stampe, M. Bullock, W. P. Tucker, R. J. Kennedy, “Growth of MgO
thin films on M-, A-, C- and R-plane sapphire”, Applied Physics,. Vol.32
(1999) pp.1778.
23. C. H. Lei, G. Van Tendeloo, J. G. Lisoni, M. Siegert, J. Schubert, “Growth
kinetic of MgO film on r-plane of sapphire: microstructural study”, Journal
of crystal growth, Vol.226 (2001) pp.419.
24. Z. X. Mei, X. L. Du, Z. Q. Zeng, Y. Guo, J. Wang, J. F. Jia, Q. K. Xue,
“Two-step growth of MgO films on sapphire (0001) substrates by radio
34
frequency plasma-assisted molecular beam epitaxy”, Chinese Physics
Letters, Vol.21, No.2 (2004) pp.410.
25. C. B. Carter, Y.K. Rasmussen, “Growth of spinel particles on alumina thin
films-I. orientation relationships and shape of the particles”, Acta
Metallurgica et Materialia, Vol.42, No.8 (1994) pp.2729.
26. C. B. Carter, Y. K. Rasmussen, “Growth of spinel particles on alumina thin
films-II. Morphology and crystallography of the interface”, Acta
Metallurgica et Materialia, Vol.42, No.8 (1994) pp.2741.
27. H. R. Thirsk, E. J. Whitmore, “An electron diffraction study of the surface
reaction between nickel oxide and corundum”, Transactions of the Faraday
Society, Vol.36 (1940) pp.565.
28. Z. Bi, R. Zhang, X. Wang, S. Gu, B. Shen, Y. Shi, Z. Liu, Y. Zheng,
“Synthesis of zinc aluminate spinel film through the solid-phase reaction
between zinc oxide film and α-alumina substrate”, Journal of the American
Ceramic Society, Vol.86, No.12 (2003) pp.2059.
29. G. Mattogno, G. Righini, G. Montesperelli, E. Traversa, “XPS analysis of
the interface of ceramic thin films for humidity sensors”, Applied Surface
Science, Vol.70–71 (1993) pp.363.
30. J. B. Heaney, G. Hass, M. McFarland, “Spinel (Al2O3:MgO):
refractive-index variations and lack of stoichiometry in evaporated films”,
Applied Optics, Vol.20 (1981) pp.2335.
31. M. Ihara, Y. Arimoto, M. Jifuku, T. Kimura, S. Kodoma, H. Yamawaki, T.
Yamaoka, “Vapor phase epitaxial growth of MgO.Al2O3”, Journal of the
Electrochemical Society, Vol.129 (1982) pp.2569.
32. M. Putkonen, M. Nieminen, L. Niinisto, “Magnesium aluminate thin films
by atomic layer deposition from organometallic precursors and water”,
35
Thin Solid Films, Vol.466 (2004) pp.103.
33. S. Mathur, M. Veith, T. Ruegamer, E. Hemmer, H. Shen, “Chemical vapor
deposition of MgAl2O4 thin films using different Mg-Al alkoxides: Role
of precursors chemistry”, Chemistry of Materials, Vol.16 (2004) pp.1304.
34. D. Hesse, H. Bethge, “Solid state reactions for the epitaxial growth of
spinel films”, Journal of Crystal Growth, Vol.65 (1983) pp.69.
35. M. D. Craven, S. H. Lim, F. Wu, J. S. Speck, S. P. Denbaars, “Structural
characterization of nonpolar (11
−2
0) a-plane GaN thin films grown on
(1
−1
02) r-plane sapphire”, Applied Physics Letters, Vol.81, No.3 (2002)
pp.469.
36. 汪建民, “材料分析” (1998) 中國材料科學學會.
37. 許樹恩, 吳泰伯, “X 光繞射原理與材料結構分析” (1993) 行政院國家
科學委員會精密儀器發展中心.
38. Paul G. Kotula, C. B. Carter, “Volume expansion and lattice rotations in
solid-state reactions between oxides”, Scripta Metallurgica et Materialia,
Vol.32, No.6 (1995) pp.863.
39. D. Hesse, H. Bethge, “Formation og Mg2TiO4 epitaxial thin films on
MgO by solid state reaction”, Journal of Crystal Growth,Vol.52 (1981)
pp.875..
40. H. Sieber, D. Hesse, P. Werner, “Misfit accommodation mechanisms at
moving reaction fronts during topotaxial spinel-forming thin-film
solid-state reactions: a high-resolution transmission electron microscopy
study of five spinels of different misfits”, Philosophical Magazine A,
Vol.75, No.4 (1997) pp.889
41. H. Sieber, P. Werner, D. Hesse, “The atomic structure of the reaction front
36
as a function of the kinetic regime of a spinel-forming solid-state reaction”,
Philosophical Magazine A, Vol.75, No.4 (1997) pp.909.
42. S. Y. Zhang, J. M. Cowley, “High resolution electron microscopy and
nanodiffraction study of the MgO/Al interface”, Thin Solid Films, Vol.148
(1987) pp.301.
43. J. J. Comer, N. C. Tombs, J. F. Fitzgerald, “Growth of single-crystal and
polycrystalline thin films of MgAl2O4 and MgFe2O4”, Journal of the
American Ceramic Society, Vol.49, No.5 (1966) pp.237.
44. A. Kelly, G. W. Groves, “Crystallography and Crystal Defects” (1970)
Wesley.
45. 姚連增, “晶體生長基礎” (1995) 中國科學技術大學出版社.
46. S. V. Yanina, C. B. Carter, “Terraces and ledges on (001) spinel surfaces”,
Surface Science Letters, Vol.513 (2002) pp.L402.
47. S. V. Yanina, C. B. Carter, “Dislocation at spinel surfaces”, Surface
Science, Vol.511 (2002) pp.133.
48. R. H. Abbaschian 原著; 劉偉隆, 林淳杰, 曾春風, 陳文照 編譯, “物理
冶金” (2000) 全華科技圖書股份有限公司.