跳到主要內容

簡易檢索 / 詳目顯示

研究生: 郭馨貽
Hsin-yi Kuo
論文名稱: Thin-GaN發光二極體電極配置對光電特性影響之研究
The Study of Electrical and Optical Performance by Electrode Design of Thin-GaN Light-Emitting Diodes.
指導教授: 張正陽
Jenq-yang Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 97
語文別: 中文
論文頁數: 82
中文關鍵詞: 電極設計發光二極體電流分佈
外文關鍵詞: electrode design, current spreading, Thin-GaN LED
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 均勻的電流分佈對高功率發光二極體之發光效率、穩定度及元件壽命具有高度的影響,由相關文獻可歸納出改善電流均勻性分佈的方法有:電極形狀、n-GaN厚度、電極阻抗及電流阻塞結構,其中理想化的電極形狀設計是提高發光效率最有效的方式。因此本論文主要的目的在於設計出不同的電極配置並搭配模擬分析,分別探討在相異的電極配置下,對Thin-GaN發光二極體光電特性的影響。
    本論文之電極設計主要藉由改變電極圖形迴圈數、電極與晶粒邊緣相對距離及電流注入位置等條件,縮短電流橫向擴散距離,達到減少串聯電阻並增加電流均勻性之目的。在電極圖形迴圈數方面,因串聯電阻的減少,使多迴圈電極較單迴圈電極可降低約2%的順向偏壓,且均勻的電流分佈可增加了9%發光強度;而在電極與晶粒邊緣相對距離為1/4時,順向偏壓較相對距離為1/2的電極減少4%,發光強度則有11%的提升。由此可知,當增加電極迴圈數搭配縮短電極與晶粒邊緣之相對距離時,會得到較均勻的電流分佈表現。此外,比較實驗與模擬結果,在順向偏壓及發光強度上兩者變化趨勢相符;而電流密度與光強分佈,亦有類似的變化趨勢,結果表示數值模擬方法在預測順向偏壓與電流分佈均勻性上已具有可參考之價值。


     High power LED chip performances are affected by the uniform current spreading on its lighting efficiency, stability, and device reliability. According to the literature review, methods which can improve the uniform current spreading are electrode shape, thickness of n-GaN, resistance of electrode, and current blocking layer. While designing an ideal electrode, the electrode pattern is the most efficient method to enhance the light efficiency. This thesis is trying to design different electrode patterns on LEDs and attached with the analyses of simulation to discuss the effect of electrical and optical performance by electrode design of Thin-GaN LED.
     This thesis is trying to change the electrode loops, the distance between electrode and chip edge, and current injected positions to shorten the distances of current sidelong spreading. It can reduce the series resistance and improve current spreading. On the electrode loops concern, the multiple loops can reduce forward voltage for 2 % than single loop because of the reducing of series resistance and enhance light output power on the uniform current spreading for 9 %. When the electrode is one-fourth far away from chip edge, the forward voltage reduces 4 % as the distance is one-second far away from chip edge and enhances the light output power for 11%. Based on these results, increasing the electrode loops attached with the distance of electrode and chip edge will show more uniform current spreading. In addition, comparing to the results of experiment and simulation, the trends are consistent on the forward voltage and light intensity. It also shows similar trends on the current density and light intensity distribution. The results represent that the method of simulation to predict the forward voltage and uniform current spreading are worth inferring.

    摘 要   i Abstract ii 誌 謝   iii 目 錄  iv 圖 目 錄 vii 表 目 錄 xi 第一章  序論 1 1-1    發光二極體之發展 1 1-2    文獻回顧 6 1-3    研究動機與目的 8 第二章  Thin-GaN發光二極體之基本原理及相關理論 9 2-1    發光二極體之原理 9 2-1-1   發光二極體之光特性原理 9 2-1-2   發光二極體之電特性原理 12 2-2    發光二極體之特性討論 16 2-2-1   電流分佈均勻之理論及對發光二極體之影響 16 2-2-2   傳輸線模型之原理 22 第三章  Thin-GaN發光二極體之製作與量測 24 3-1    Thin-GaN發光二極體之製作流程 24 3-1-1   氮化鎵試片結構 24 3-1-2   發光二極體晶粒之定義 26 3-1-3   鈍化層及p側金屬電極之製作 31 3-1-4   電鍍銅基板與雷射剝離 35 3-1-5   n側金屬電極之製作 37 3-2    Thin-GaN發光二極體光電特性量測系統介紹 39 3-2-1   電流電壓特性曲線之量測系統 39 3-2-2   發光強度分佈之量測系統 41 3-2-3   積分球量測系統 41 第四章  實驗結果分析與討論 43 4-1    電極設計 43 4-2    改變電極與晶粒邊緣相對距離對Thin-GaN發光二極體之光電特性影響量測數據分析與討論 45 4-3    改變電極圖型對Thin-GaN發光二極體之光電特性影響量測數據分析與討論 50 4-4    改變電流注入位置對Thin-GaN發光二極體之光電特性影響量測數據分析與討論 54 4-5    Thin-GaN發光二極體電場之三維數值模擬 56 4-5-1   COMSOL模擬架構之簡介 56 4-5-2   實驗數據與模擬結果比對分析與討論 56 第五章  結論與未來展望 62 5-1    結論 62 5-2    未來展望 63 參 考 文 獻 64

    [1] S Nakamura, “GaN growth using GaN buffer layer,” Japanese Journal of Applied Physics Part 2-Letters, Vol. 30, pp. L1705, 1991.
    [2] S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, “High-power InGaN single-quantum-well-structure blue and violet light-emitting-diodes,” Applied Physics Letters, Vol. 67, pp. 1868, 1995.
    [3] 史光國,半導體發光二極體及固態照明,全華科技圖書股份有限公司,台北市,民國九十四年。
    [4] 取自http://www.ledinside.com/files/audi_car_led_200708
    [5] 取自http://www.jupa.co.jp/image/hisb_led
    [6] 取自http://img.diytrade.com/cdimg/322405/1199373/0/1106124216
    [7] 取自http://www.hongkongmichael.com/discuz/attachments/forumid_58/led
    _1_hqQlHWqJTE6T
    [8] Z.S. Luo, Y. Cho, V. Loryuenyong, T. Sands, N. W. Cheung, and M. C. Yoo, “Enhancement of (In,Ga)N light-emitting diode performance by laser liftoff and transfer from sapphire to silicon,” IEEE Photonics Technology Letters, Vol. 14, pp. 1400, 2002.
    [9] V. Härle, B. Hahn, J. Baur, M.Fehrer, A. Weimar, S. Kaiser, D. Eisert, F. Eberhard, A. Plössl, S. Bader, “Advanced Technologies for high efficiency GaInN LEDs for solid state lighting,” Proc. of SPIE, Vol. 5187, pp. 24, 2004.
    [10] X. Guo, and E. F. Schubert, “Current crowding and optical saturation effects in GaInNÕGaN light-emitting diodes grown on insulating substrates,” Applied Physics Letters, Vol. 78, pp. 3337, 2001.
    [11] Hyunsoo Kim, Seong-Ju Park, and Hyunsang Hwang, “Design and Fabrication of Highly Efficient GaN-Based Light-Emitting Diodes,” IEEE Transactions on Electron Devices, Vol. 49, pp. 1715, 2002.
    [12] X. A. Cao, E. B. Stokes, P. Sandvik, N. Taskar, J. Kretchmer, and D. Walker, “Optimization of current spreading metal layer for GaN/InGaN-based light emitting diodes,” Solid State Electron, Vol. 46, pp. 1235, 2002.
    [13] A. Ebong, S. Arthur, E. Downey, X.A. Cao, S. LeBoeuf, and D.W. Merfeld, “Device and circuit modeling of GaN/InGaN light emitting diodes (LEDs) for optimum current spreading,” Solid-State Electronics, Vol. 47, pp. 1817, 2003.
    [14] J. T. Chu, C. C. Kao, H. W. Huang, W. D. Liang, C. F. Chu, T. C. Lu, H. C. Kuo, and S. C. Wang, “Effects of Different n-Electrode Patterns on Optical Characteristics of Large-Area p-Side-Down InGaN Light-Emitting Diodes Fabricated by Laser Lift-Off,” Japanese Journal of Applied Physics Part 1, Vol. 44, pp. 7910, 2005.
    [15] J. S. Yun ,S. M. Hwang, and J. I. Shim, “Current Spreading Analysis in Vertical Electrode GaN-based Blue LEDs,” Proc. of SPIE, Vol. 5187, pp. 24, 2007.
    [16] H. Kim, K. K. Kim, K. K. Choi, H. Kim, J. O. Song, J. Cho, K. H. Baik, C. Sone, Y. Park, and T. Y. Seong, ” Measurements of current spreading length and design of GaN-based light emitting diodes,” Applied Physics Letters, Vol. 90, pp. 63510, 2007.
    [17] T. M. Chen, S. J. Wang, K. M. Uang, H. Y. Kuo, C. C. Tsai, W. C. Lee, and H. Kuan, ”Current Spreading and Blocking Designs for improving Light Output Power from the Vertical-Structured GaN Based Light Emitting Diodes” IEEE Photonics Technology Letters, VOL. 20, pp. 703, 2008.
    [18] A. Murai, D. B. Thompson, H. Masui, N. Fellows, U. K. Mishra, S. Nakamura, and S. P. DenBaars, “Hexagonal pyramid shaped light-emitting diodes based on ZnO and GaN direct wafer bonding,” Applied Physics Letters, Vol. 89, pp. 171116, 2006.
    [19] C. L. Lin, P. H. Chen, C. H. Chan, C. C. Lee, C. C. Chen, J. Y. Chang, and C. Y. Liu, “Light enhancement by the formation of an Al oxide honeycomb nanostructure on the n-GaN surface of thin-GaN light-emitting diodes,” Applied Physics Letters, Vol. 90, pp. 242106, 2007.
    [20] C. H. Chiu, C. E. Lee, C. L. Chao, B. S. Cheng, H. W. Huang, H. C. Kuo, T. C. Lu, S. C. Wang, W. L. Kuo, C. S. Hsiao, and S. Y. Chen, “Enhancement of Light Output Intensity by Integrating ZnO Nanorod Arrays on GaN-Based LLO Vertical LEDs,” The Electrochemical Society, Vol. 11, pp. H84, 2008.
    [21] H. Y. Gao, F. W. Yan, Y. Zhang, J. M. Li, Y. P. Zeng, and G. H. Wang, “Enhancement of the light output power of InGaN/GaN light-emitting diodes grown on pyramidal patterned sapphire substrates in the micro- and nanoscale,” Journal of Applied physics, Vol. 103, pp. 014314, 2008.
    [22] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Applied Physics Letters, Vol. 84, pp. 855, 2004.
    [23] 施敏(S. M. Sze)著,半導體元件物理與製作技術,黃調元譯,二版,國立交通大學出版社,新竹,民國九十一年。
    [24] E. F. Schubert, Light-Emitting Diodes, 2nd ed., Cambridge Univ. Press, New York, 2006.
    [25] H. Kim, J. M. Lee, C. Huh, S. W. Kim, D. J. Kim, S. J. Park, and H. Hwang, “Modeling of a GaN-based light emitting diode for uniform current spreading,” Applied Physics Letters, Vol. 77, pp. 1903, 2000.
    [26] W. Shockley, “Research and investigation of inverse epitaxial UHF power transistors,” Report No. A1-TOR-64-207, Air Force Atomic Laboratory, Wright-Patterson Air Force Base, Ohio, September 1964.
    [27] Dieter K. Schroder, Semiconductor Material and Device Characterization, 2nd ed., Wiley Interscience, America, 1998.
    [28] 許建祺,「Thin-GaN發光二極體電性改善之研究」,國立中央大學,碩士論文,民國九十七年。
    [29] M. K.Kelly, O. Ambacher, B. Dahlheimer, G. Groos, R. Dimitrov, H. Angerer, and M. Stutzmann, “Optical patterning of GaN films,” Applied Physics Letters, Vol. 69, pp. 1749, 1996.
    [30] W. S. Wang, L. F. Schloss, G. S. Sudhir, B. P. Linder, K. M. Yu, E. R. Weber, T Sands, and N. W. Cheung, “Pulsed excimer laser processing of AlN/GaN thin films,” Master. Res. Soc. Symp., Proc. 449, pp. 1011, 1997.

    QR CODE
    :::