| 研究生: |
諾斯拉 Nuzla Af'idatur Robbaniyyah |
|---|---|
| 論文名稱: |
應用Petviashvili方法求雙組份非線性薛丁格方程組的駐波解 The Numerical Approximation of Stationary Wave Solutions for Two-Component System of Nonlinear Schrodinger Equations by Using Generalization Petviashvili Method |
| 指導教授: |
陳建隆
Jann-Long Chern |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系 Department of Mathematics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 39 |
| 中文關鍵詞: | 非线性薛定er方程 、静止波 |
| 外文關鍵詞: | Nonlinear Schrodinger Equations, Stationary Wave, Petviashvili Method |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
考慮這樣的穩態的非線性波動方程式:$Mu+u^p=0$,其中微分算子M是正定自伴算子,p是常數。只有一個方程式時,數值上一般可以用Petviashvili method求出孤立波解。此處我們的感興趣的問題是一些二維的雙組份非線性薛丁格方程組,我們將Petviashvili method推廣到此方程組,並得到數值上的收斂。
The Petviashvili method is a numerical method for obtaining fundamental solitary wave solutions of stationary scalar nonlinear wave equations with-power-law nonlinearity: Mu + up = 0, where M is a positive denite and self-adjoint operator, and p is constant. Due to the case is system of solitary nonlinear wave equations, we generalize the Petviashvili method. We apply this generalized method for two-component system of nonlinear Schrodinger equations (NLSE) for
2-D. From the numerical results, if the spectral radius of the numerical scheme for system is less than one, then we get quick convergence of the numerical method.
References
[1] C. Xianjin, T. C. Lin, and J. Wei, Blowup and solitary wave solutions
with ring proles of two-component nonlinear Schrodinger
system, Physica D 239 (2010) 613-626.
[2] D. E. Pelinovsky and Y. A. Stepanyants, Convergence of Petviashvili's
iteration method for numerical approximation of stationary
solutions of nonlinear wave equations, SIAM J. Numer. Anal.
42 (2004), 1110-1127.
[3] I. Bakirtas, Vortex structures in saturable media, INTECH, Istanbul.
[4] J. J. Garcia Rippoll and V. M. Perez, Optimizing Schrodinger functionals
using Sobolev gradients: applications to quantum mechanics
and nonlinear optics, SIAM J. Sci. Comput. 23 (2001), 1316-1334.
[5] J. Wei and Y. Wei, Uniqueness of positive solutions to some coupled
nonlinear Schrodinger equations, Communication on Pure and
Applied Analysis 11 (2012).
[6] J. Yang, T. I. Lakoba, Convergence and acceleration of imaginarytime
evolution methods for solitary waves in arbitrary spatial dimensions,
Available from:https://arxiv.org(preprintnlin.PS/07113434).
[7] N. Akhmediev and A. Ankiewicz, Partially coherent solitons on a
nite background, Phys. Rev. Lett. 82 (1-4) (1999) 2661.
[8] T. C. Lin and J. Wei, Zero solitary and self-similar solutions of
two-component system of nonlinear Schrodinger equations, Physica
D. 220 (2006), 99-115.
[9] T. I. Lakoba, Conjugate gradient method for nding fundamental
solitary wave, Physica D. 220 (2009), 2308-2330.
[10] T. I. Lakoba and J. Yang, Accelerated imaginary-time evolution
methods for the computational of solitary waves, J. Comput. Phys.
226 (2007), 265-292.
26
[11] T. I. Lakoba and J. Yang, A generalized Petviashvili iteration
method for scalar and vector Hamiltonian equations with arbitrary
form of nonlinearity, J. Comput. Phys. 226 (2007), 1668-1692.
[12] V. Hutson, V. J. S. Pym, and M. J. Cloud, Applications of Functional
Analysis and Operator Theory, Second-Edition, Elsevier B.
V, Amsterdam, 2005.
[13] V. I. Petviashvili, Equation of an extraordinary soliton, Plasma
Physics. 2 (1976), 257-258.
[14] V. I. Petviashvili and O. V. Pokotelov, Solitary waves in plasmas
and in the atmosphere, Gordon and Breach, Philadelphia, 1992.
[15] V. S. Shchenovich and S. B. Cavalcanti,
Rayleigh functional for nonlinear systems, Available
from:http://www.arxiv.org(preprintnlin.PS/0411033).
[16] W. Bao, Q. Du, Computing the ground state solution of Bose-
Einstein condensates by a normalized gradient
ow, SIAM J. Comput.
25(2004), 1674-1697.
27