跳到主要內容

簡易檢索 / 詳目顯示

研究生: 諾斯拉
Nuzla Af'idatur Robbaniyyah
論文名稱: 應用Petviashvili方法求雙組份非線性薛丁格方程組的駐波解
The Numerical Approximation of Stationary Wave Solutions for Two-Component System of Nonlinear Schrodinger Equations by Using Generalization Petviashvili Method
指導教授: 陳建隆
Jann-Long Chern
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 39
中文關鍵詞: 非线性薛定er方程静止波
外文關鍵詞: Nonlinear Schrodinger Equations, Stationary Wave, Petviashvili Method
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 考慮這樣的穩態的非線性波動方程式:$Mu+u^p=0$,其中微分算子M是正定自伴算子,p是常數。只有一個方程式時,數值上一般可以用Petviashvili method求出孤立波解。此處我們的感興趣的問題是一些二維的雙組份非線性薛丁格方程組,我們將Petviashvili method推廣到此方程組,並得到數值上的收斂。


    The Petviashvili method is a numerical method for obtaining fundamental solitary wave solutions of stationary scalar nonlinear wave equations with-power-law nonlinearity: 􀀀Mu + up = 0, where M is a positive de nite and self-adjoint operator, and p is constant. Due to the case is system of solitary nonlinear wave equations, we generalize the Petviashvili method. We apply this generalized method for two-component system of nonlinear Schrodinger equations (NLSE) for
    2-D. From the numerical results, if the spectral radius of the numerical scheme for system is less than one, then we get quick convergence of the numerical method.

    Contents X i Abstract ii Acknowledgement iii Contents iv 1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Petviashvili Method . . . . . . . . . . . . . . . . . . . . . 3 2 Generalized Petviashvili Method and Its Convergence 6 2.1 Generalized Petviashvili Method for Single Equation . . 6 2.2 Generalized Petviashvili Method for System Equations . 10 2.3 Convergence of Numerical Scheme . . . . . . . . . . . . . 15 3 Numerical Computation Results and Discussion 18 3.1 Two-Component System of Nonlinear Schrodinger Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2 Two-Component System of Nonlinear Schrodinger Equations with Epsilon Parameter (") . . . . . . . . . . . 22 4 Concluding Remarks 25 References 26

    References
    [1] C. Xianjin, T. C. Lin, and J. Wei, Blowup and solitary wave solutions
    with ring pro les of two-component nonlinear Schrodinger
    system, Physica D 239 (2010) 613-626.
    [2] D. E. Pelinovsky and Y. A. Stepanyants, Convergence of Petviashvili's
    iteration method for numerical approximation of stationary
    solutions of nonlinear wave equations, SIAM J. Numer. Anal.
    42 (2004), 1110-1127.
    [3] I. Bakirtas, Vortex structures in saturable media, INTECH, Istanbul.
    [4] J. J. Garcia Rippoll and V. M. Perez, Optimizing Schrodinger functionals
    using Sobolev gradients: applications to quantum mechanics
    and nonlinear optics, SIAM J. Sci. Comput. 23 (2001), 1316-1334.
    [5] J. Wei and Y. Wei, Uniqueness of positive solutions to some coupled
    nonlinear Schrodinger equations, Communication on Pure and
    Applied Analysis 11 (2012).
    [6] J. Yang, T. I. Lakoba, Convergence and acceleration of imaginarytime
    evolution methods for solitary waves in arbitrary spatial dimensions,
    Available from:https://arxiv.org(preprintnlin.PS/07113434).
    [7] N. Akhmediev and A. Ankiewicz, Partially coherent solitons on a
    nite background, Phys. Rev. Lett. 82 (1-4) (1999) 2661.
    [8] T. C. Lin and J. Wei, Zero solitary and self-similar solutions of
    two-component system of nonlinear Schrodinger equations, Physica
    D. 220 (2006), 99-115.
    [9] T. I. Lakoba, Conjugate gradient method for nding fundamental
    solitary wave, Physica D. 220 (2009), 2308-2330.
    [10] T. I. Lakoba and J. Yang, Accelerated imaginary-time evolution
    methods for the computational of solitary waves, J. Comput. Phys.
    226 (2007), 265-292.
    26
    [11] T. I. Lakoba and J. Yang, A generalized Petviashvili iteration
    method for scalar and vector Hamiltonian equations with arbitrary
    form of nonlinearity, J. Comput. Phys. 226 (2007), 1668-1692.
    [12] V. Hutson, V. J. S. Pym, and M. J. Cloud, Applications of Functional
    Analysis and Operator Theory, Second-Edition, Elsevier B.
    V, Amsterdam, 2005.
    [13] V. I. Petviashvili, Equation of an extraordinary soliton, Plasma
    Physics. 2 (1976), 257-258.
    [14] V. I. Petviashvili and O. V. Pokotelov, Solitary waves in plasmas
    and in the atmosphere, Gordon and Breach, Philadelphia, 1992.
    [15] V. S. Shchenovich and S. B. Cavalcanti,
    Rayleigh functional for nonlinear systems, Available
    from:http://www.arxiv.org(preprintnlin.PS/0411033).
    [16] W. Bao, Q. Du, Computing the ground state solution of Bose-
    Einstein condensates by a normalized gradient
    ow, SIAM J. Comput.
    25(2004), 1674-1697.
    27

    QR CODE
    :::