跳到主要內容

簡易檢索 / 詳目顯示

研究生: 廖浩廷
Hao-Ting Liao
論文名稱: 自然殺手細胞過繼免疫療法延長低度遠端轉移乳癌小鼠的生存期及增強肺部樹突狀細胞和 T 細胞的活化
Adoptive natural killer cell therapy prolongs overall survival in mice with low-burden metastases breast cancer and enhances dendritic cell and T cell activation in metastatic lungs
指導教授: 廖南詩
Nan-Shih Liao
羅月霞
Yueh-Hsia Luo
口試委員:
學位類別: 碩士
Master
系所名稱: 生醫理工學院 - 生命科學系
Department of Life Science
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 65
中文關鍵詞: 自然殺手細胞樹突細胞幹細胞樣T細胞
外文關鍵詞: Natural killer cell, Dendritic cell, Stem cell-like CD8+ T cell
相關次數: 點閱:22下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 先前的研究表明,在沒有後天性免疫細胞參與的情況下,自然殺手細胞可通過釋放細胞 顆粒和細胞激素來對抗癌細胞的轉移。早期抗腫瘤免疫反應中,在 1 型輔助 T 細胞 (TH1) 和具有細胞毒殺性的 CD8+ T 細胞生成和活化之前,自然殺手細胞是主要 IFN-γ 的生產者,對於腫瘤微環境中免疫反應的調控相當重要。此外,IFN-γ 能促進樹突狀細 胞 (DC) IL-12 的釋放,並誘導 T 細胞分化成 TH1 細胞。IFN-γ 還可增強活化 CD8+ T 細胞的增殖和細胞毒性,例如 granzyme B 和 TNF 相關凋亡誘導配體的表達。然而, 自然殺手細胞也可以產生免疫抑制性激素 IL-10,該細胞激素通過抑制 T 細胞的共同 刺激路徑來控制 T 細胞的激活,此外,也能抑制 DC 的成熟和抗原呈現的功能。
    由於我們體外擴增的自然殺手細胞表達 IFN-γ 和 IL-10。因此透過使用野生型、Ifng-/- 和 Il-10-/- 自然殺手細胞,探討自然殺手細胞衍生的 IFN-γ 和 IL-10 是否影響後天性免 疫反應來控制肺部轉移的癌細胞。使用自發性 EO771 乳腺癌轉移模型,我們發現,在 原發腫瘤切除後進行自然殺手細胞治療可以顯著延長低程度的癌細胞轉移小鼠的長期 存活率。這種自然殺手細胞療法的效果需要 CD8+ T 細胞的幫助。此外,自然殺手細胞 治療增強癌症轉移肺部中 1 型和 2 型傳統樹突狀細胞 (cDCs)、Foxp3- CD4+ T 細胞和幹 細胞樣 (SCL) CD8+ T 細胞的活化。然而,未觀察到肺引流縱隔淋巴結中的 T 細胞活 化。這些結果表明,自然殺手細胞活化傳統樹突細胞,隨後傳統樹突細胞促進肺中的 T 細胞活化。此外,幹細胞樣 CD8+ T 細胞增殖的增加暗指肺中的功能性 T 細胞得到了補充。我們發現 自然殺手細胞中的 IFN-γ 缺失會削弱這些效果,並降低低程度的癌細 胞轉移小鼠的生存率。綜合來說,自然殺手細胞療法可以透過 IFN-γ 活化傳統樹突細胞 與 T 細胞和其他方式來影響功能性 T 細胞的功能以治療低程度的乳腺轉移。


    Previous studies indicated that Natural killer (NK) cells exert effective anti-metastases activity through direct release of cytotoxic granules and cytokines without the involvement of adaptive immunity. NK cell is the sole producer of IFN-γ, an important regulator of immune cells within the tumor microenvironment (TME), in the early phase of an anti-tumor immune response prior to the generation and activation of type 1 T helper (TH1) cells and cytotoxic CD8+ T cells. Moreover, IFN-γ promotes DC to produce IL-12 and triggers T cell differentiation into TH1 cells. It also enhances the proliferation and cytotoxicity of activated CD8+ T cells, such as the expression of granzyme B and TNF-related apoptosis-inducing ligand (TRAIL). However, NK cells can produce immunosuppressive IL-10, which inhibits the T cell co-stimulatory pathway to control T cell activation and suppresses the maturation and antigen-presenting functions of DCs.
    Our ex-vivo expanded NK cells express IFN-γ and IL-10. Therefore, I performed comparative study on wild type, Ifng-/- and Il-10-/- NK cells to examine whether NK-cell-derived IFN-γ and IL-10 influences adaptive immune response to control metastatic cancer in the lung. Using a spontaneous metastasis model of EO771 breast cancer, we found that transfer of our NK cells after primary tumor resection prolong overall survival in mice bearing low-burden metastases. This effect of NK cell therapy depends on CD8+ T cells. Furthermore, the NK cell treatment enhances the activation of type 1 and type 2 conventional dendritic cells (cDCs) and the activation of Foxp3- CD4+ T cells and stem cell-like (SCL) CD8+ T cells in the metastatic lung. Whereas no enhancement of T cell activation in the lung-draining mediastinal lymph nodes was observed. These results imply that NK cells activate DCs, and subsequently, cDC promote T cells activation in the lung. Furthermore, the increase SCL CD8+ T cells proliferation suggest a replenishment of effector T cells in the lung. Importantly, we found that IFN-γ deficiency in NK cells diminishes these effects and attenuate survival rate in mice with low-burden metastases. Collectively, NK cell therapy can effectively treat low-burden metastatic breast cancer by activating the cDC-T cell axis and other effector T cell.

    中文摘要 i Abstract iii 誌謝 v Contents vi Figure contents viii Table contents ix Chapter 1. Introduction 1 1.1 Breast cancer 1 1.2 Tumor microenvironment (TME) 1 1.3 Natural killer (NK) cells 2 1.3.1 NK cell development 2 1.3.2 NK cell activation and anti-tumor function 3 1.4 The role of dendritic cell (DC) in cancer 4 1.5 NK-DC-T cell axis 6 1.6 The states of CD8+ T cells in TME 7 Chapter 2. Materials and methods 9 2.1 Mice 9 2.2 Tumor cell lines 9 2.3 Ex vivo expansion of murine NK cells and sorting 9 2.4 E0771 resection and metastasis model and NK cells adoptive transfer 10 2.5 T cell depletion 10 2.6 Flow cytometer 11 Chapter 3. Result 13 3.1 E0771-resected lung metastasis model 13 3.2 Syngeneic NK cell therapy is effective in treating low-burden metastases. 13 3.3 The effect of syngeneic NK cell therapy depends on CD8+ T cells. 15 3.4 NK cell transfer promotes T cell activation and increases SCL CD8+ T cells in metastatic lung. 15 3.4 NK cell transfer promotes T cell activation and increases SCL CD8+ T cells in metastatic lung. 15 3.5 NK cell transfer increases MHC-IIhi cDC1 subsets and upregulates cDC1 activation in metastatic lung. 17 3.6 NK cell transfer upregulates cDC2 activation in metastatic lung. 19 3.7 NK cell transfer leads to an increase of activated cDCs but does not affect the state of T cell activation in the mLN. 20 3.8 IFN-γ of transferred NK cells is not the sole determinant of OS but enhances early survival of mice bearing low-burden metastases. 21 Chapter 4. Discussion 23 Chapter 5. Conclusion 27 Chapter 6. References 28 Figure 1. Syngeneic NK cell therapy is effective in E0771 resection mice with low metastatic burden. 34 Figure 2. Depletion of CD8+ cells abolish the efficacy of NK cell therapy. 35 Figure 3. Transferred of NK cell promotes T cell activation and proliferation, as well as increases SCL CD8+ T cells in metastatic lung. 38 Figure 4. NK cell transfer increases MHC-IIhi cDC1 subsets and modulates the expression of APC functional molecules by cDC1 subsets in metastatic lung. 41 Figure 5. NK cell transfer increases MHC-IIhi cDC2 subsets and modulates the expression of APC functional molecules by cDC2 subsets in metastatic lung. 44 Figure 6. NK cell transfer auguments the activation of migratory cDC1 in mLN. 47 Figure 7. NK cell transfer does not influence the state of T cell activation in mLN. 49 Figure 8. IFN-γ deficiency of transferred NK cells affects the early survival of E0771 resection mice with low metastatic burden. 50 Antibodies used for FACS analysis of murine cells 51

    1. Waks, A.G. and E.P. Winer, Breast Cancer Treatment: A Review. JAMA, 2019. 321(3): p. 288-300.
    2. Viel, S., et al., TGF-beta inhibits the activation and functions of NK cells by repressing the mTOR pathway. Sci Signal, 2016. 9(415): p. ra19.
    3. Sun, C., et al., High NKG2A expression contributes to NK cell exhaustion and predicts a poor prognosis of patients with liver cancer. Oncoimmunology, 2017. 6(1): p. e1264562.
    4. Huang, S., S.E. Ullrich, and M. Bar-Eli, Regulation of tumor growth and metastasis by interleukin-10: the melanoma experience. J Interferon Cytokine Res, 1999. 19(7): p. 697-703.
    5. Hsu, P., et al., IL-10 Potentiates Differentiation of Human Induced Regulatory T Cells via STAT3 and Foxo1. J Immunol, 2015. 195(8): p. 3665-74.
    6. Zheng, S.G., et al., TGF-beta requires CTLA-4 early after T cell activation to induce FoxP3 and generate adaptive CD4+CD25+ regulatory cells. J Immunol, 2006. 176(6): p. 3321-9.
    7. D'Andrea, A., et al., Interleukin 10 (IL-10) inhibits human lymphocyte interferon gamma-production by suppressing natural killer cell stimulatory factor/IL-12 synthesis in accessory cells. J Exp Med, 1993. 178(3): p. 1041-8.
    8. Xia, C.Q. and K.J. Kao, Suppression of interleukin-12 production through endogenously secreted interleukin-10 in activated dendritic cells: involvement of activation of extracellular signal-regulated protein kinase. Scand J Immunol, 2003. 58(1): p. 23-32.
    9. Pahne-Zeppenfeld, J., et al., Cervical cancer cell-derived interleukin-6 impairs CCR7-dependent migration of MMP-9-expressing dendritic cells. Int J Cancer, 2014. 134(9): p. 2061-73.
    10. Park, S.J., et al., IL-6 regulates in vivo dendritic cell differentiation through STAT3 activation. J Immunol, 2004. 173(6): p. 3844-54.
    11. Scoville, S.D., A.G. Freud, and M.A. Caligiuri, Modeling Human Natural Killer Cell Development in the Era of Innate Lymphoid Cells. Front Immunol, 2017. 8: p. 360.
    12. Abel, A.M., et al., Natural Killer Cells: Development, Maturation, and Clinical Utilization. Front Immunol, 2018. 9: p. 1869.
    13. Wang, X. and X.Y. Zhao, Transcription Factors Associated With IL-15 Cytokine Signaling During NK Cell Development. Front Immunol, 2021. 12: p. 610789.
    14. Vance, R.E., et al., Mouse CD94/NKG2A is a natural killer cell receptor for the nonclassical major histocompatibility complex (MHC) class I molecule Qa-1(b). J Exp Med, 1998. 188(10): p. 1841-8.
    15. Hicklin, D.J., F.M. Marincola, and S. Ferrone, HLA class I antigen downregulation in human cancers: T-cell immunotherapy revives an old story. Mol Med Today, 1999. 5(4): p. 178-86.
    16. Smyth, M.J., et al., Activation of NK cell cytotoxicity. Mol Immunol, 2005. 42(4): p. 501-10.
    17. Kaplan, D.H., et al., Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice. Proc Natl Acad Sci U S A, 1998. 95(13): p. 7556-61.
    18. Shimasaki, N., A. Jain, and D. Campana, NK cells for cancer immunotherapy. Nat Rev Drug Discov, 2020. 19(3): p. 200-218.
    19. Chockley, P.J., et al., Epithelial-mesenchymal transition leads to NK cell-mediated metastasis-specific immunosurveillance in lung cancer. J Clin Invest, 2018. 128(4): p. 1384-1396.
    20. Lopez-Soto, A., et al., Epithelial-mesenchymal transition induces an antitumor immune response mediated by NKG2D receptor. J Immunol, 2013. 190(8): p. 4408-19.
    21. Takeda, K., et al., IFN-gamma production by lung NK cells is critical for the natural resistance to pulmonary metastasis of B16 melanoma in mice. J Leukoc Biol, 2011. 90(4): p. 777-85.
    22. Mittal, D., et al., Interleukin-12 from CD103(+) Batf3-dependent dendritic cells required for NK-Cell suppression of metastasis. Cancer Immunol Res, 2017. 5(12): p. 1098-1108.
    23. Hildner, K., et al., Batf3 deficiency reveals a critical role for CD8alpha+ dendritic cells in cytotoxic T cell immunity. Science, 2008. 322(5904): p. 1097-100.
    24. Roberts, E.W., et al., Critical Role for CD103(+)/CD141(+) Dendritic Cells Bearing CCR7 for Tumor Antigen Trafficking and Priming of T Cell Immunity in Melanoma. Cancer Cell, 2016. 30(2): p. 324-336.
    25. Ferris, S.T., et al., cDC1 prime and are licensed by CD4(+) T cells to induce anti-tumour immunity. Nature, 2020. 584(7822): p. 624-629.
    26. Mikucki, M.E., et al., Non-redundant requirement for CXCR3 signalling during tumoricidal T-cell trafficking across tumour vascular checkpoints. Nat Commun, 2015. 6: p. 7458.
    27. Spranger, S., et al., Tumor-Residing Batf3 Dendritic Cells Are Required for Effector T Cell Trafficking and Adoptive T Cell Therapy. Cancer Cell, 2017. 31(5): p. 711-723 e4.
    28. Hochrein, H., et al., Differential production of IL-12, IFN-alpha, and IFN-gamma by mouse dendritic cell subsets. J Immunol, 2001. 166(9): p. 5448-55.
    29. Macri, C., et al., Dendritic cell subsets. Semin Cell Dev Biol, 2018. 84: p. 11-21.
    30. Leal Rojas, I.M., et al., Human Blood CD1c(+) Dendritic Cells Promote Th1 and Th17 Effector Function in Memory CD4(+) T Cells. Front Immunol, 2017. 8: p. 971.
    31. Andreu-Sanz, D. and S. Kobold, Role and Potential of Different T Helper Cell Subsets in Adoptive Cell Therapy. Cancers (Basel), 2023. 15(6).
    32. de Saint-Vis, B., et al., A novel lysosome-associated membrane glycoprotein, DC-LAMP, induced upon DC maturation, is transiently expressed in MHC class II compartment. Immunity, 1998. 9(3): p. 325-36.
    33. Cheng, S., et al., A pan-cancer single-cell transcriptional atlas of tumor infiltrating myeloid cells. Cell, 2021. 184(3): p. 792-809 e23.
    34. Maier, B., et al., A conserved dendritic-cell regulatory program limits antitumour immunity. Nature, 2020. 580(7802): p. 257-262.
    35. Zhang, X., et al., Dissecting esophageal squamous-cell carcinoma ecosystem by single-cell transcriptomic analysis. Nat Commun, 2021. 12(1): p. 5291.
    36. Peng, W.S., et al., Dissecting the heterogeneity of the microenvironment in primary and recurrent nasopharyngeal carcinomas using single-cell RNA sequencing. Oncoimmunology, 2022. 11(1): p. 2026583.
    37. Bassez, A., et al., A single-cell map of intratumoral changes during anti-PD1 treatment of patients with breast cancer. Nat Med, 2021. 27(5): p. 820-832.
    38. Del Prete, A., et al., Dendritic cell subsets in cancer immunity and tumor antigen sensing. Cell Mol Immunol, 2023. 20(5): p. 432-447.
    39. Bottcher, J.P., et al., NK Cells Stimulate Recruitment of cDC1 into the Tumor Microenvironment Promoting Cancer Immune Control. Cell, 2018. 172(5): p. 1022-1037.e14.
    40. Durgeau, A., et al., Recent Advances in Targeting CD8 T-Cell Immunity for More Effective Cancer Immunotherapy. Front Immunol, 2018. 9: p. 14.
    41. Jiang, W., et al., Exhausted CD8+T Cells in the Tumor Immune Microenvironment: New Pathways to Therapy. Front Immunol, 2020. 11: p. 622509.
    42. Castiglioni, A., et al., Combined PD-L1/TGFbeta blockade allows expansion and differentiation of stem cell-like CD8 T cells in immune excluded tumors. Nat Commun, 2023. 14(1): p. 4703.
    43. Galletti, G., et al., Two subsets of stem-like CD8(+) memory T cell progenitors with distinct fate commitments in humans. Nat Immunol, 2020. 21(12): p. 1552-1562.
    44. Shih-Wen Huang, Y.-G.L., Hao-Ting Liao, Chin-Ling Chang, Ruo-Yu Ma, Yung-Hsiang Chen, Yae-Huei Liou, Zhen-Qi Wu, Yu-Chen Wu, Ko-Jiunn Liu, Yen-Tsung Huang, Jen-Lung Yang, Ming-Shen Dai, Nan-Shih Liao, Syngeneic natural killer cell therapy activates dendritic and T cells in metastatic lungs and effectively treat low-burden metastases. 2024.
    45. Melaiu, O., et al., Influence of the Tumor Microenvironment on NK Cell Function in Solid Tumors. Front Immunol, 2019. 10: p. 3038.
    46. Ruffell, B., et al., Macrophage IL-10 blocks CD8+ T cell-dependent responses to chemotherapy by suppressing IL-12 expression in intratumoral dendritic cells. Cancer Cell, 2014. 26(5): p. 623-37.
    47. Sharpe, A.H. and K.E. Pauken, The diverse functions of the PD1 inhibitory pathway. Nat Rev Immunol, 2018. 18(3): p. 153-167.
    48. Calagua, C., et al., A Subset of Localized Prostate Cancer Displays an Immunogenic Phenotype Associated with Losses of Key Tumor Suppressor Genes. Clin Cancer Res, 2021. 27(17): p. 4836-4847.
    49. Yang, Z.Z., et al., Expression of LAG-3 defines exhaustion of intratumoral PD-1(+) T cells and correlates with poor outcome in follicular lymphoma. Oncotarget, 2017. 8(37): p. 61425-61439.
    50. Jones, R.B., et al., Tim-3 expression defines a novel population of dysfunctional T cells with highly elevated frequencies in progressive HIV-1 infection. Journal of Experimental Medicine, 2008. 205(12): p. 2763-2779.
    51. Mocikat, R., et al., Natural killer cells activated by MHC class I(low) targets prime dendritic cells to induce protective CD8 T cell responses. Immunity, 2003. 19(4): p. 561-9.
    52. Eisenbarth, S.C., Dendritic cell subsets in T cell programming: location dictates function. Nat Rev Immunol, 2019. 19(2): p. 89-103.
    53. Si, Y., et al., Lung cDC1 and cDC2 dendritic cells priming naive CD8(+) T cells in situ prior to migration to draining lymph nodes. Cell Rep, 2023. 42(10): p. 113299.
    54. Correia, A.L., et al., Hepatic stellate cells suppress NK cell-sustained breast cancer dormancy. Nature, 2021. 594(7864): p. 566-571.
    55. Malladi, S., et al., Metastatic Latency and Immune Evasion through Autocrine Inhibition of WNT. Cell, 2016. 165(1): p. 45-60.
    56. Uemura, A., et al., Natural killer cell is a major producer of interferon gamma that is critical for the IL-12-induced anti-tumor effect in mice. Cancer Immunol Immunother, 2010. 59(3): p. 453-63.
    57. Spiegel, A., et al., Neutrophils suppress intraluminal NK Cell-mediated tumor cell clearance and enhance extravasation of disseminated carcinoma cells. Cancer Discov, 2016. 6(6): p. 630-49.
    58. Gurevich, I., et al., Active dissemination of cellular antigens by DCs facilitates CD8(+) T-cell priming in lymph nodes. Eur J Immunol, 2017. 47(10): p. 1802-1818.
    59. Schenkel, J.M., et al., Conventional type I dendritic cells maintain a reservoir of proliferative tumor-antigen specific TCF-1(+) CD8(+) T cells in tumor-draining lymph nodes. Immunity, 2021. 54(10): p. 2338-2353 e6.
    60. Prokhnevska, N., et al., CD8(+) T cell activation in cancer comprises an initial activation phase in lymph nodes followed by effector differentiation within the tumor. Immunity, 2023. 56(1): p. 107-124 e5.
    61. Bodder, J., et al., Harnessing the cDC1-NK Cross-Talk in the Tumor Microenvironment to Battle Cancer. Front Immunol, 2020. 11: p. 631713.
    62. Dong, Y., et al., PD-L1 Is Expressed and Promotes the Expansion of Regulatory T Cells in Acute Myeloid Leukemia. Front Immunol, 2020. 11: p. 1710.
    63. Arasanz, H., et al., PD1 signal transduction pathways in T cells. Oncotarget, 2017. 8(31): p. 51936-51945.
    64. Imai, Y., et al., Interferon-gamma induced PD-L1 expression and soluble PD-L1 production in gastric cancer. Oncol Lett, 2020. 20(3): p. 2161-2168.
    65. Peng, Q., et al., PD-L1 on dendritic cells attenuates T cell activation and regulates response to immune checkpoint blockade. Nat Commun, 2020. 11(1): p. 4835.
    66. Oyer, J.L., et al., PD-L1 blockade enhances anti-tumor efficacy of NK cells. Oncoimmunology, 2018. 7(11): p. e1509819.
    67. Siddiqui, I., et al., Intratumoral Tcf1 PD-1 CD8 T Cells with Stem-like Properties Promote Tumor Control in Response to Vaccination and Checkpoint Blockade Immunotherapy. Immunity, 2019. 50(1): p. 195-221.e10.

    QR CODE
    :::