| 研究生: |
林捷翔 Jie-Siang Lin |
|---|---|
| 論文名稱: |
近似包覆橢圓球之應用與研究 |
| 指導教授: |
莊漢東
Han-tung Chuang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | Bounding Box 、Bounding Ellipsoid 、Convex hull 、最小平方橢圓球嵌合(Least Squares Ellipsoid Specific Fitting) |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘 要
物件近似為一種普遍使用於電腦繪圖、計算幾何學計算物件間相交(Object Intersection)與機器人自動避碰(Collision Avoidance)軌跡規劃分析的方法。藉由適當之物件近似可將複雜之物體以簡單體積來近似,如此便可利用簡單的方法初步分析兩物體相交或發生碰撞之可能性。若兩近似體不存在任何交集,則代表實際物體也不可能發生相交或碰撞之情形。反之,若兩近似體存在著交集,則兩物體有可能存在相交或碰撞之情形,此時才需要再進一步執行複雜之計算。
所以為能更快速且方便的提供碰撞偵測比對,本計畫將結合保守近似之包覆矩形具有長寬高之彈性變化與積極近似包覆圓球的概念,探討不等軸之包覆橢圓球(Bounding Elliposid)近似方法,相較於目前用於偵測橢圓球的方法,本研究加上了密度評估的策略,能讓嵌合計算出的橢圓球更接近物體外形,進而在碰撞偵測上能更準確。
Abstract
Bounding volume are widely employed in many areas of computer graphics.Usually,we use crude approximations of the scene geometry to speed up some time-consuming computations, such as object intersection or collision avoidance, etc.Test was performed to check if overlapping of the bounding boxes occurs.If it occurs,we need further computations.
In order to fast and effectively computes the object intersection or collision avoidance,this investigaton combined bounding box with bounding spherea as the method of bounding ellipsoid.In this investigation,we combine least squares ellipsoid specific fitting with weights estimation such that the collision detection will be more accurate.
參考文獻
[1] Thomas Brinkhoff, Hans-Peter Kriegel, Ralf Schneider, “Comparison of Approximation of Complex Objects Used for Approximation-based Query Processing in Spatial Database System”, Proceedings of the Ninth International Conference on Data Engineering, pp.40-49, 1993.
[2] S. Ding, M.A. Mannan, A.N. Poo, “Oriented bounding box and octree based gloabal interference detection in 5-axis machining of free-form surfaces”, Proceedings of the ACM SIGGRAPH Conference on Computer-Aided Design, Vol.36, pp.1281-1294, 2004.
[3] C.K. Chan, S.T. Tan, “Determination of the minimum bounding box of an arbitrary solid : an iterative approach”, Computers and Structures, Vol.79, pp.1433-1449, 2001.
[4] S. Gottschalk, M.C. Lin, D. Manocha, “OBB tree : a hierarchical structure for rapid interference detection”, Proceedings of the ACM SIGGRAPH Conference on Computer Graphics, August 1996.
[5] Qingde Li, John G. Griffiths, “Least Squares Ellipsoid Specific Fitting”, Geometric Modeling and Processing 2004,pp.335-340.
[6] A. Fitzgibbon, M. Pilu, R. B. Fisher, “Direct least square fitting of ellipses”, IEEE Transaction on Pattern Analysis and Machine intelligence, 21(5),pp.476–480, May 1999.
[7] Adel A. Sewisy, Franz Leberl, “Detection ellipses by finding lines of symmetry in the images via an hough transform applied to straight lines”, Image Vision Comput. 19(12),pp.857-866 (2001).
[8] Yiwu Lei, Kok Cheong Wong, “Ellipse detection based on symmetry”, Pattern Recognition Letters 20(1),pp.41-47 (1999).
[9] P. S. Nair, A. T. Saunders Jr., “Hough transform based ellipse detection algorithm”, Pattern Recognition Letters 17(7),pp.777-784 (1996).
[10] 許嘉純,“ 奧氏轉換在橢圓球傎測上的應用 ”,國立臺灣大學資訊工程硏究所碩士論文,1988。
[11] Sung Joon Ahn, Wolfgang Rauh, Hans-Jürgen Warnecke, “Least-squares orthogonal distances fitting of circle, sphere, ellipse, hyperbola, and parabola”, Pattern Recognition 34(12),pp.2283-2303 (2001).
[12] M. Pauly, R. Keiser, L. Kobbelt, M. Gross, “shape modeling with point-sampled geometry”, in Proceedings of ACM SIGGRAPH 03 ,2003.
[13] V. Pratt., “Direct least-squares fitting of algebraic surfaces.” , Computer Graphics, 21(4):145–151, July 1987.
[14] J. W. Harris, H. Stocker. Handbook of Mathematics and computa- tional Science. Springer-Verlag, NewYork,1998.
[15] 莊漢東、林家任,“類神經網路於橢圓近似包覆與其應用之研究”,國立中央大學機械工程學系碩士論文,2005。
[16] 曾永銘,“駭客動力學”,鼎茂圖書出版有限公司,2001。
[17] 張智星,“MATLAB程式設計與應用”,清蔚科技出版事業部, 2000。