跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蔡詔揚
Chao-Yang Tasi
論文名稱: 利用智慧型控制配電型靜態同步補償器(DSTATCOM)改善電力品質及直流鏈電壓調控
Intelligent Controlled DSTATCOM for Power Quality Improvement and DC-Link Voltage Regulation
指導教授: 林法正
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 117
中文關鍵詞: 靜態同步補償器電力品質直流鏈電壓控制虛功補償總諧波失真非對稱歸屬函數之補償模糊類神經網
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一配電型靜態同步補償器來改善非線性與線性負載造成之電流諧波與功率因數等電力品質問題。另一方面,由於功率流進或流出配電型靜態同步補償器之直流鏈側的電容,會造成直流鏈電壓的波動。因此,配電型靜態同步補償器之直流鏈電壓控制在負載變動情況下尤其重要。本論文為了改善電力品質與有效地維持直流鏈電壓在非線性與線性負載變動情況下,提出一新式非對稱補償模糊類神經網路(CFNN-AMF)控制器取代傳統比例積分(PI)控制器。本論文所提出的非對稱補償模糊類神經網路(CFNN-AMF),其補償層參數整合了CFNN模糊系統中的悲觀與樂觀運算。並且,在歸屬函數層的維度採用非對稱(AMF)的方式以優化模糊規則與提升網路學習能力的最佳化。此外,本論文將詳細介紹CFNN-AMF的網路架構與線上學習法則。最後,以實驗結果驗證使用CFNN-AMF之配電型靜態同步補償器在非線性與線性負載變動情況下改善電力品質與維持直流鏈電壓之有效性與可行性。


    A distribution static compensator (DSTATCOM) is proposed to improve power quality, including the grid current harmonic and power factor, resulted from the nonlinear and linear loads. On the other hands, since the instantaneous power following into or out of the DC-link capacitor on the DC side of the DSTATCOM, a sudden load change may cause a serious DC-link voltage fluctuation across the dc capacitor. Hence, the DC-link voltage regulation control of the DSTATCOM is important especially under load variation. In this study, to improve the power quality and keep the DC-link voltage of the DSTATCOM constant under variation of nonlinear and linear loads effectively, the traditional proportional-integral (PI) controller is substituted with a novel online trained compensatory neural fuzzy network with an asymmetric membership function (CFNN-AMF) controller. In the proposed CFNN-AMF, the compensatory parameter to integrate pessimistic and optimistic operations of fuzzy systems is embedded in the CFNN. Moreover, the dimensions of the Gaussian membership functions are directly extended to AMFs for the optimization of the fuzzy rules and the upgrade of learning ability of the networks. Furthermore, the network structure and online learning algorithms of the proposed CFNN-AMF are introduced in detail. Finally, the effectiveness and feasibility of the DSTATCOM using the proposed CFNN-AMF controller for the improvement of power quality and maintaining the constant DC-link voltage under nonlinear and linear load change have been demonstrated by some experimental results.

    摘要 I Abstract II 目錄 IV 圖目錄 VII 表目錄 X 第一章 緒 論 1 1.1 研究背景與動機 1 1.2 文獻回顧 2 1.3 論文大綱 5 1.4 本文貢獻 6 第二章 規範與配電型靜態同步補償器介紹 7 2.1 簡介 7 2.2 電流諧波 7 2.2.1電流諧波定義 8 2.2.2諧波失真率公式及現行諧波管制標準 9 2.3 功率因數 12 2.3.1 功率因數定義 13 2.3.2 功率因數管制標準 14 2.4 DSTATCOM介紹 15 2.4.1 彈性交流輸電系統之基本介紹 16 2.4.2 配電型靜態同步補償器之工作原理 19 第三章 配電型靜態同步補償器系統架構與控制策略 21 3.1 簡介 21 3.2 三相座標軸轉換 22 3.3 靜止座標軸 23 3.4 配電型靜態同步補償器架構與補償技術 24 3.4.1 瞬時功率理論(Instantaneous Power Theory) 25 3.4.1 同步旋轉座標軸法(Synchronous Reference Frame, SRF) 28 3.5 直流鏈電壓控制 29 3.6 整體控制策略 30 第四章 非對稱歸屬函數之補償模糊類神經網路 32 4.1 簡介 32 4.2 非對稱歸屬函數之補償模糊類神經網路架構 32 4.3 非對稱歸屬函數之補償模糊類神經網路線上學習法則 36 4.4 非對稱歸屬函數之補償模糊類神經網路收斂性分析 39 第五章 模擬結果 43 5.1 模擬結果 43 5.1.1 非線性負載補償模擬結果 43 5.1.2 功率因數補償模擬結果 50 5.1.3 非線性負載與功率因數補償模擬結果 57 5.1.4 變動負載模擬結果 60 第六章 硬體與實驗結果 65 6.1 簡介 65 6.2 硬體設備 65 6.2.1 變流器 67 6.2.2 非線性負載與線性負載 69 6.2.3 資料擷取卡 70 6.3 實驗結果 71 6.3.1 非線性負載補償實驗結果 72 6.3.2 功率因數補償實驗結果 79 6.3.3 非線性負載與功率因數補償實驗結果 86 6.3.4 變動負載實驗結果 89 6.3.5 智慧型控制器參數學習實驗結果 94 第七章 結論與未來展望 95 7.1 結論 95 7.2 未來展望 96 參考文獻 97 作者簡歷 102

    [1] 劉家豪,解讀『 2015 世界能源展望 世界能源展望 』報告─能源需求持續成長,電力結構穩健邁向低碳化,能源知識庫。
    [2] 國家溫室氣體減量法規資訊網,http://estc10.estc.tw/ghgrule/QA/QA_list.asp?id=9
    [3] 經濟部能源局,太陽光電2年推動計畫,2015。
    [4] 經濟部能源局,風力發電4年推動計畫,2017。
    [5] Z. Qiang, Q. Lewei, Z. Chongwei, and D. Cartes, “Study on grid connected inverter used in high power wind generation system,” in IEEE 41st Annu. Ind. Applicat. Conf. Rec., Oct. 2006, p. 6.
    [6] M. Farhoodnea, A. Mohamed, and H. Shareef, “A comparative study on the performance of custom power devices for power quality improvement,” in Proc. IEEE Innov. Smart Grid Technol., Kuala Lumpur, Malaysia, May 20–23, 2014.
    [7] J. Arrillaga, M. J. Bollen, and N. R. Watson, “Power quality following deregulation,” Proc. IEEE, vol. 88, pp. 246–260, Feb. 2000.
    [8] E. Song, A. F. Lynch, and V. Dinavahi, “Experimental validation of nonlinear control for a voltage source converter,” IEEE Trans. Control Syst. Technol., vol. 17, no. 5, pp. 1135–1144, Sep. 2009.
    [9] F Somsai, and K Kulworawanichpong, “Instantaneous power control of DSTATCOM with consideration of power factor correction,” ECTI-Conference, pp-1186-1190, june 2010.
    [10] A. Ghosh, and A. Joshi, “A new approach to load balancing and power factor correction in power distribution system,” IEEE Trans. Power Del., vol. 15, no. 1, pp. 417–422, Jan. 2000.
    [11] P. Lohia, M. K. Mishra, K. Karthikeyan, and K. Vasudevan, “A minimally switched control algorithm for three-phase four-leg VSI topology to compensate unbalanced and nonlinear load,” IEEE Trans. Power Electron., vol. 23, no. 4, pp. 1935–1944, Jul. 2008.
    [12] S. R. Arya, R. Niwas, K. Kant Bhalla, B. Singh, A. Chandra, and K. Al-Haddad, “Power Quality Improvement in Isolated Distributed Power Generating System Using DSTATCOM,” IEEE Transactions on Industry Applications, vol. 51, no. 6, pp. 4766-4774, Nov.-Dec. 2015.
    [13] M. T. Ahmad, N. Kumar and B. Singh, “Generalised neural networkbased control algorithm for DSTATCOM in distribution systems,” IET Power Electronics, vol. 10, no. 12, pp. 1529-1538, 10 6 2017.
    [14] P. Kasinathan, R. Vairamani, and S. Sundramoorthy, “Dynamic performance investigation of dq model with PID controller-based unified powerflow controller,” IET Power Electron., vol. 6, pp. 843–850, 2013.
    [15] J. Crowe: PID Control: New Identification and Design Methods. London, U.K.: Springer-Verlag, 2005.
    [16] T. Yamamoto, K. Takao, and T. Yamada, “Design of a data-driven PID controller,” IEEE Trans. Control Syst. Technol., vol. 17, no. 1, 2009.
    [17] A. Bhattacharya and C. Chakraborty, “A shunt active power filter with enhanced performance using ANN-based predictive and adaptive controllers,” IEEE Trans. Ind. Electron., vol. 58, no. 2, pp. 421–428, Feb. 2009.
    [18] M. Mohaddes, A. M. Gole, and P. G. McLaren, “A neural network controlled optimal pulse-width modulated STATCOM”, IEEE Transactions on Power Delivery, V01.14, no.2, April 1999, pp.481488.
    [19] S.C. Lin, C.C. Tsai, and W.L. Luo, “Adaptive Neural Network Control of a Self-balancing Two-wheeled Scooter,” Proc. 2007 IEEE IECON 2007. 33rd Annual Conference, Taipei, Taiwan, pp.868 – 873, 5-8 Nov. 2007.
    [20] S. Cong, and Y. Liang, “PID-like neural network nonlinear adaptive control for uncertain multivariable motion control systems,” IEEE Trans. Ind. Electron., vol. 56, no. 10, pp. 3872-3879, Oct. 2009.
    [21] L. X. Wang, “A course in fuzzy systems and control,” (Prentice-Hall, NJ, 1997).
    [22] W. Yu, and X. O. Li, “Fuzzy identification using fuzzy neural networks with stable learning algorithms,” IEEE Trans. Fuzzy Syst., vol. 12, no. 3, pp. 411-420, 2004.
    [23] F. J. Lin, L. T. Teng, P. H. Shieh, and Y. F. Li, “Intelligent controlled-wind-turbine emulator and induction-generator system using RBFN,” Proc. Inst. Elect. Eng. Elect. Power Appl., vol. 153, no. 4, pp. 608-618, Jul. 2006.
    [24] K. H. Tan, F. J. Lin, and J. H. Chen, “A Three-Phase Four-Leg Inverter-Based Active Power Filter for Unbalanced Current Compensation Using a Petri Probabilistic Fuzzy Neural Network,” Energies, vol 10,Dec. 2017.
    [25] C. F. Juang, “A TSK-type recurrent fuzzy network for dynamic systems processing by neural network and genetic algorithm,” IEEE Trans. Fuzzy Syst., vol. 10, pp. 155–170, Apr. 2002.
    [26] P. A. Mastorocostas and J. B. Theocharis, “A recurrent fuzzy-neural model for dynamic system identification,” IEEE Trans. Syst., Man, Cybern. B, vol. 32, pp. 176–190, Feb. 2002.
    [27] Y.-Q. Zhang, and A. Kandel, “Compensatory neurofuzzy systems with fast learning algorithms,” IEEE Trans. Neural Networks, vol. 9, pp. 83–105, Feb. 1998.
    [28] K. H. Cheng, C. F. Hsu, C. M. Lin, T. T. Lee, and C. Li, “Fuzzy– neural sliding-mode control for DC–DC converters using asymmetric gaussian membership functions,” IEEE Trans. Ind. Electron., vol. 54, no. 3, pp. 1528–1536, Jun. 2007.
    [29] F. J. Lin, K. C. Lu, T. H. Ke, B.-H. Yang, and Y. R. Chang, “Reactive power control of three-phase grid-connected PV system during grid faults using Takagi-Sugeno-Kang probabilistic fuzzy neural network control,” IEEE Trans. Ind. Electron., vol. 62, no. 9, pp. 5516–5528, Sep. 2015.
    [30] 王耀諄,電力品質,高立,台北縣,民國 94年。
    [31] Testing and measurement techniques-general guide on harmonics and interharmonics measurements and instrumentation, for power supply systems and equipment connected thereto. IEC Std. 61000-4-7, 2009.
    [32] IEEE Standard Definitions for the Measurement of Electric Power Quantities Under Sinusoidal, Nonsinusoidal, Balanced, or Unbalanced Conditions, IEEE Standards Association, IEEE Std.1459-2010, 2010.
    [33] IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems, IEEE Standards Association, 2014.
    [34] C. K. Duffey and R. P. Stratford, “Update of harmonic standard IEEE519: IEEE recommended practices and requirements for harmonic control in electric power systems,” IEEE Trans. Ind. Applicat., vol. 25, no. 6, pp. 1025–1034, Nov./Dec. 1989.
    [35] N.Mohan, T.M.Undeland, and W.P.Robbins, Power electronics:converter, application, and design, 3rd ed, New York:John Wiley & Sons, 2003
    [36] 全國法規資料料庫入口網站.電業法http://www.rootlaw.com.tw/LawArticle.aspx?LawID=A040100050007900-0900403
    [37] 陳威宇,配電型靜態同步補償器軟體迴路之即時模擬Software-in-the-loop simulation for a D-STATCOM,臺灣科技大學,碩士論文,民國100年。
    [38] 黃瓊誼等,彈性交流輸電系統介紹,台電工程月刊,第578期,民國85年。
    [39] 李興傑,閘控串聯電容器在感應電機控制特性之研究,成功大學,碩士論文,民國91年。
    [40] J. R. Enslin, “Unified approach to power quality mitigation,” in Proc. IEEE Int. Symp. Industrial Electronics (ISIE ’98), vol. 1, 1998, pp. 8–20.
    [41] G. Escobar, A. M. Stankovic, and P. Mattavelli, “An adaptive controller in stationary reference frame for D-statcom in unbalanced operation,” IEEE Trans. Ind. Electron., vol. 51, no. 2, pp. 401–409, Apr. 2004.
    [42] H. Akagi, Instantaneous Power Theory and Applications to Power Conditioning, New Jersey, USA. : Wiley, 2007.
    [43] B. Singh, and J. Solanki, “A comparison of control algorithms for DSTATCOM,” IEEE Trans. Ind. Electron., vol. 56, no. 7, pp. 2738 2745, Jul. 2009.
    [44] A. G. Cerrada, O. P. Ardila, V. F. Batlle, P. R. Sánchez, and P. G. González, “Application of a repetitive controller for a three-phase active power filter,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 237–246, Jan. 2007.
    [45] N. Beniwal, I. Hussain, and B. Singh1, “Hybrid VSS–LMS–LMS based adaptive control of SPV-STATCOM system under distorted grid conditions,” IEEE Region 10 Conference, vol. 56, no. 7, pp. 2738 2745, Jul. 2009.
    [46] M. Badoni, A, Singh, and B. Singh, “Adaptive neurofuzzy inference system least-mean-square-based control algorithm for DSTATCOM,” IEEE Trans. Ind. Informat., vol. 12, no. 2, pp. 483–492, Apr. 2016.

    QR CODE
    :::