| 研究生: |
高振舜 Jen-Shuen Gao |
|---|---|
| 論文名稱: |
模糊系統控制-多凸面法-波雅定理 Fuzzy Systems Control-Convexity-P´olya |
| 指導教授: |
羅吉昌
Ji-Chang Lo |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 寬鬆變數(Relaxed variables) 、多凸面(multi-convexity) 、Takagi-Sugeno (T-S) 模糊模型 、線性矩陣不等式 (LMI) 、波雅定理(P´olya theorem) 、平方和SOS(Sum Of Squares) |
| 外文關鍵詞: | Copositive relaxations, Takagi-Sugeno fuzzy model, Prameter-dependent Lyapunov function, Linear matrix inequality ;, Sum of Squares |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文是以狀態回饋控制(state feedback control)研究受控體(fuzzy systems) 所代表的模糊系統穩定與否問題,以及應用波雅定理((P´olya theorem) 於穩定性檢測條件上,以得到較為寬鬆的檢測條件。
內容方面本論文將分為兩部分來進行討論,第一部份為利用多凸面法(multi-convexity),推導滿足Lyapunov穩定性的檢測條件,並加入波雅定理(P´olya theorem),藉由此方法得到更大的解空間,並利用LMI (Linear Matrix Inequality)求解,第二部份為利用平方和SOS (Sum Of Squares)求解。
第一部分為利用多凸面(multi-convexity)的概念,降低一般普遍存於共同P矩陣(common P)論述上的保守性,本論文是建立在非共同$P$解(non-common P)的論述上,並且應用波雅定理(P´olya theorem)加上寬鬆變數(Relaxed variables),因此具有更寬鬆的求解條件。
第二部份,近年來應用於求解的工具,大多以LMI(Linear Matrix Inequality)求解,但其複雜度會隨著矩陣大小以及LMI個數而增大,而利用SOSTOOLS求解則能大大降低其複雜度並且不用額外的寬鬆變數(Relaxed variables)。
Based on parameter-dependent Lyapunov function, we study asymptotically copositive relaxation families with certificate of convergence to the existence of parameter-dependent Lyapunov function, releasing the conservatism that commonly exists in the quadratic stability approaches.
[1] J. Wan and J. Lo, “LMI relaxations for nonlinear fuzzy control systems via homogeneous
polynomials,” in The 2008 IEEE World Congress on Computational
Intelligence, FUZZ 2008, Hong Kong, CN, June 2008, pp. 134–140.
[2] K. Tanaka and H. Wang, Fuzzy Control Systems Design: A Linear Matrix In-
equality Approach. New York, NY: John Wiley & Sons, Inc., 2001.
[3] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications
to modelling and control,” IEEE Trans. Syst., Man, Cybern., vol. 15, no. 1, pp.
116–132, Jan. 1985.
[4] H. Ying, “Sufficient conditions on uniform approximation of multivariate functions
by Takagi-Sugeno fuzzy systems with linear rule consequent,” IEEE Trans. Syst.,
Man, Cybern. A: Systems and Humans, vol. 28, no. 4, pp. 515–520, Apr. 1998.
[5] H. Wang, J. Li, D. Niemann, and K. Tanaka, “T-S fuzzy model with linear rule
consequence and PDC controller: a universal framework for nonlinear control
systems,” in Proc. of 18th Int’l Conf. of the North American Fuzzy Information
Processing Society, 2000.
[6] H. Wang, K. Tanaka, and M. Griffin, “An approach to fuzzy control of nonlinear
systems: stability and design issues,” IEEE Trans. Fuzzy Systems, vol. 4, no. 1,
pp. 14–23, Feb. 1996.
[7] K. Tanaka, T. Ikeda, and H.Wang, “Fuzzy regulators and fuzzy observers: relaxed
stability conditions and LMI-based designs,” IEEE Trans. Fuzzy Systems, vol. 6,
no. 2, pp. 250–265, May 1998.
[8] E. Kim and H. Lee, “New approaches to relaxed quadratic stability condition of
fuzzy control systems,” IEEE Trans. Fuzzy Systems, vol. 8, no. 5, pp. 523–534,
Oct. 2000.
[9] Y. Blanco, W. Perruquetti, and P. Borne, “Relaxed stability conditions for Takagi-
Sugeno’s fuzzy models,” in Proc. 9th IEEE Conf. Fuzzy Syst., vol. 2, San Antonio,
TX., 2000, pp. 539–543.
[10] H. Tuan, P. Apkarian, T. Narikiyo, and Y. Yamamoto, “Parameterized linear
matrix inequality techniques in fuzzy control system design,” IEEE Trans. Fuzzy
Systems, vol. 9, no. 2, pp. 324–332, Apr. 2001.
[11] M. Johansson, A. Rantzer, and K.-E. Arzen, “Piecewise quadratic stability of
fuzzy systems,” IEEE Trans. Fuzzy Systems, vol. 7, no. 6, pp. 713–722, Dec. 1999.
[12] K. Kiriakidis, “Robust stabilization of the Takagi-Sugeno fuzzy model via bilinear
matrix inequalities,” IEEE Trans. Fuzzy Systems, vol. 9, no. 2, pp. 269–277, Apr.
2001.
[13] M. Chadli, D. Maquin, and J. Ragot, “Relaxed stability conditions for Takagi-
Sugeno fuzzy systems,” in Proc. 2000 IEEE International Conference on Systems,
Man, and Cybernetics, vol. 5, 2000, pp. 3514–3519.
[14] K. Tanaka, T. Hori, and H. Wang, “A fuzzy Lyapunov approach to fuzzy control
system design,” in American Control Conference, vol. 6, Arlington, VA, 2001, pp.
4790 –4795.
[15] ——, “A dual design problem via multiple Lyapunov functions ,” in Proc. 10th
IEEE Conf. Fuzzy Syst., vol. 1, Melbourne, Australia, 2001, pp. 388 –391.
[16] G. Feng and J. Ma, “Quadratic stabilization of uncertain discrete-time fuzzy dynamic
system,” IEEE Trans. Circuits and Syst. I: Fundamental Theory and Ap-
plications, vol. 48, no. 11, pp. 1137–1344, Nov. 2001.
[17] S. Cao, N. Rees, and G. Feng, “H1 control of nonlinear continuous-time systems
based on dynamical fuzzy models,” Int’l. Journal on Systems Science, vol. 27,
no. 9, pp. 821–830, 1996.
[18] B. Rhee and S. Won, “A new fuzzy Lyapunov function approach for a Takagisugeno
fuzzy control system design,” Fuzzy Set and Systems, vol. 157, pp. 1211–
1228, 2006.
[19] A. Sala and C. Ari˜no, “Asymptotically necessary and sufficient conditions for
stability and performance in fuzzy control: Applications of Polya’s theorem,”
Fuzzy Set and Systems, vol. 158, pp. 2671–2686, 2007.
[20] V. Montagner, R. Oliveira, and P. Peres, “Necessary and sufficient LMI conditions
to compute quadratically stabilizing state feedback controller for Takagi-sugeno
systems,” in Proc. of the 2007 American Control Conference, July 2007, pp. 4059–
4064.
[21] X. Liu and Q. Zhang, “New approaches to H1 controller designs based on fuzzy
observers for T-S fuzzy systems via LMI,” Automatica, vol. 39, pp. 1571–1582,
2003.
[22] P. Apkarian and H. Tuan, “Parameterized LMIs in control theory,” SJAM J.
Control Optim., vol. 38, no. 4, pp. 1241–1264, 2000.
[23] H. Hammouri and J. De Leon Morales, “Observer synthesis for state-affine systems,”
in Proc. of the 29th Conference on Decision and Control, Honolulu, Hawaii,
1990.
[24] “Observer synthesis for a class of nonlinear control systems,” European Journal of
Control, vol. 2, no. 3, pp. 172–192, 1996.
[25] G. Besancon, J. De Le on-Morales, and O. Huerta-Guevara, “On adaptive observers
for state affine systems,” Int. J. Contr., vol. 79, no. 6, pp. 581–591, June
2006.
[26] E. Mandani, “Outline of a new approach to the analysis of complex systems and
decision proceesses,” IEEE Trans. Syst., Man, Cybern., vol. 3, no. 1, pp. 28–44,
Jan 1973.
[27] J. Lo and F. Li, “Stability Analysis - Multiconvexity Approach,” in The 17th Int’l
Federation on Automatic Control, Seoul, Kr, July 2008, pp. 14 454–14 459.
[28] J. Lo and J. Wan, “Studies on LMI relaxations for fuzzy control systems via
homogeneous polynomials,” IET Control Theory Appl., 2010, in press.
[29] R. Oliveira and P. Peres, “Stability of polytopes of matrices via affine parameterdependent
Lyapunov functions: Asymptotically exact LMI conditions,” Linear
Algebra and its Applications, vol. 405, pp. 209–228, 2005.
[30] ——, “LMI conditions for the existence of polynomially parameter-dependent Lyapunov
functions assuring robust stability,” in Proc. of 44th IEEE Conf. on Deci
and Contr, Seville, Spain, Dec. 2005, pp. 1660–1665.
[31] ——, “LMI conditions for robust stability analysis based on polynomially
parameter-dependent Lyapunov functions,” Syst. & Contr. Lett., vol. 55, pp. 52–
61, 2006.
[32] ——, “Parameter-dependent LMIs in robust analysis: characterization of homogeneous
polynomially parameter-dependent solutions via LMI relaxatiions,” IEEE
Trans. Automatic Control, vol. 52, no. 7, pp. 1334–1340, July 2007.
[33] A. Sala and C. Ari˜no, “Design of multiple-parameterization PDC controllers via
relaxed condition for multi- dimensional fuzzy summations,” in Proc. of Fuzz-
IEEE’07., London, UK, 2007, doi:10.1109/FUZZY.2007.4295495.
[34] B. Ding, H. Sun, and P. Yang, “Further studies on LMI-based relaxed stabilization
conditions for nonlinear systems in Takagi-sugeno’s form,” Automatica, vol. 43, pp.
503–508, 2006.
[35] S. Prajna, A. Papachristodoulou, and P. Parrilo, “Introducing SOSTOOLS: a
general purpose sum of squares programming solver,” in Proc of IEEE CDC,
Montreal, Ca, July 2002, pp. 741–746.
[36] K. Tanaka, H. Yoshida, and et al, “A sum of squares approach to stability analysis
of polynomial fuzzy systems,” in Proc. of the 2007 American Control Conference,
New York, NY, July 2007, pp. 4071–4076.
[37] ——, “Stabilization of polynomial Fuzzy systems via a sum of squares approach,”
in Proc. of the 22nd Int’l Symposium on Intelligent Control Part of IEEE Multi-
conference on Systems and Control, Singapore, Oct. 2007, pp. 160–165.
[38] P. Parrilo, Structured Semidefinite Programs and Semialgebraic Geometry Methods
in Robustness and Optimization. Caltech, Pasadena, CA.: PhD thesis, 2000.
[39] S. Prajna, A. Papachristodoulou, and et al, “New developments on sum of squares
optimization and SOSTOOLS,” in Proc. the 2004 American Control Conference,
2004, pp. 5606–5611.
[40] H. Ichihara and E. Nobuyama, “A computational approach to state feedback synthesis
for nonlinear systems based on matrix sum of squares relaxations,” in Proc.
17th Int’l Symposium on Mathematical Theory of Network and Systems, Kyoto,
Japan, 2006, pp. 932–937.
[41] H. Ichihara, “Observer design for polynomial systems using convex optimization,”
in Proc. of the 46th IEEE CDC, New Orleans, LA, Dec. 2007, pp. 5347–5352.
[42] C. Hol and C. Scherer, “Sum of squares relaxations for polynomial semidefinite
programming,” in Proc.of MTNS, 2004, pp. 1–10.
[43] C. Scherer and C. Hol, “Asymptotically exact relaxations for robust LMI problems
based on matrix-valued sum-of-squares,” in Proc. 16th Int’l Symposium on
Mathematical Theory of Network and Systems, 2004, pp. 1–11.