跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李建賞
Chien-Shang Lee
論文名稱: The analysis of log returns using copula-based Markov models
指導教授: 孫立憲
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 統計研究所
Graduate Institute of Statistics
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 43
中文關鍵詞: 對數報酬非標準學生T分配貝氏理論馬可夫蒙地卡羅法
外文關鍵詞: Log returns, non-standardized Student's t-distribution, bayes inference
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在現實生活中,我們學過股票的報酬隨著每天的股價變化而改變。本文中,我們透過copula之下的馬可夫鍊模型去探討股價的對數報酬的相關性。由於在股票市場上報酬有厚尾的性質,所以我們使用邊際分布為非標準學生T分配。但是自由度的最大概似估計量在此模型假設下無法求得。所以我們決定用貝氏理論方法去估計模型的參數。藉由馬可夫鍊蒙地卡羅法中的Metropolis-Hastigs 演算法可以估計出我們模型中的參數,再來利用條件機率的方式去產生有相關性的模擬資料驗證貝氏理論方法在copula之下的馬可夫鍊模型下是可以去估計的。在實證分析中,我們將選用S&P 500指數作為我們的實證分析資料。


    In the real world, we learn that log returns change from the variety of the stock price everyday. In this paper, we propose a copula-based Markov model to perform the log return for the stock price. Owing to the fat tail feature in stock market, we select non-standardized Student's t-distribution being the marginal distribution. However, the maximum likelihood estimator of the degree of freedom can not be found. We decide to use bayes inference to estimate the parameters of copula-based Markov model. Using Metropolis-Hastings algorithm within Markov chain Monte Carlo method can find the bayes estimator of our model and developing the algorithm for generating correlated data by extending the conditional approach to test bayes inference can work for the copula-based Markov model. In the empirical analysis, the S&P 500 Index is analyzed for illustration.

    摘要i Abstract ii 誌謝iii 1 Introduction 1 2 Copula-based Markov models 4 2.1 Non-standardized Student’s t-distribution . . . . . . . . . . . . . . . . . . 4 2.2 Background knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 Model assumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.4 The likelihood function of Clayton copula . . . . . . . . . . . . . . . . . . 7 2.5 The difficulties on the MLE . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3 Bayesian Inference 9 3.1 Selection of hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2 Bayes estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.3 Metropolis-Hastings algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 12 4 Simulation Study 15 4.1 Simulation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5 Empirical Study 24 5.1 Data description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.2 Empirical result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 6 Conclusion 30 References 32

    [1] Berger, J. O. (1985) Statistical Decision Theory and Bayesian Analysis, 2nd Edition.
    Springer-Verlag: New York.
    [2] Carter, C. K., Kohn, R. (1994) Markov chain Monte Carlo in conditionally Gaussian
    state space models. Biometrika, 83, 589-601.
    [3] Darsow, W. F., Nguten, B., Olsen, E. T. (1992) Copulas and Markov Processes.
    Illinois Journal of Mathematics, 36, 600-642.
    [4] Emura, T. Long, T. H., Sun, L. H. (2017) R routines performing estimation and
    statistical process control under copula-based time series models. Communications
    in Statistics - Simulation and Computation, 46(4), 3067-3087.
    [5] Frees, E. W., Valadez, E. (1998) Understanding the relationships using copulas. North
    American Actuarial Journal, 2, 1-25.
    [6] Gelman, A., Rubin, D. (1992) Inference from Iterative simulation using Multiple
    sequences. Statistical Science, 7, 457-473.
    [7] Geman, S., Geman, D. (1984) Stochastic relaxation, Gibbs distributions and the
    Bayesian restoration of images. IEEE Trans. on Pattern Analysis and Machine Intelligence.
    6, 721-741.
    [8] Hasting, W. K. (1970) Monte Carlo sampling methods using Markov chains and their
    applications. Biometrika, 57, 97-109.
    32
    [9] Huang, Y. L., Fan, T. H. (2013) Bayesian Reliablity Analysis of Constant-stress
    Accelerated Degradation Based on Gamma Process with Random Effect and Time-
    Scale Transformation. Master thesis.
    [10] Joe, H. (1997) Multivariate Models and dependence. Chapman & hall.
    [11] Kiefer, N. (1978) Discrete Parameter Variation: Efficient Estimation of a Switching
    Regression Model. Econometrica, 2, 427-434.
    [12] Lindgren, G. (1978) Markov Regime Models for Mixed Distributions and Switching
    Regressions. Scandinavian Journal of Statistics, 5, 81-91.
    [13] Long, T. H., Emura, T. (2014) A control chart using copula-based Markov chain
    models. Journal of the Chinese Statistical Association, 52(4), 466-496.
    [14] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., Teller, E. (1953)
    Equation of state calculations by fast computing machines. Journal of Chemical
    Physics, 21, 1087-1092.
    [15] Michael, J., Nicholas, P. (2002) MCMC Methods for Financial Econometrics. Handbook
    of Financial Econometrics.
    [16] Nelsen, R. B. (2006) An Introduction to Copulas, 2nd Edition. Springer Series in
    Statistics, Springer-Verlag: New York.
    [17] Neslehova, J. (2014) On rank correlation measures for non-continuous random variables.
    Multivariate Analysis, 98, 544-567.
    [18] R development Core Team (2014) R: a language and environment for statistical
    computing. Foundation for Statistical Computing, R version 3.2.1.
    [19] Ross, S. M. (2006) Simulation, 4th Edition. Elevier.
    [20] Smith, A. F. M., Roberts, G. O. (1993) Bayesian Computation via the Gibbs sampler
    and related Markov chain Monte Carlo method (with discussion). J. R. Statist. Soc.,
    B, 55, 3-23.

    QR CODE
    :::