跳到主要內容

簡易檢索 / 詳目顯示

研究生: 楊泓璟
Hung-Ching Yang
論文名稱: 以冷凍成型積層製造及固態水支撐製程製作水性生物可降解型聚胺酯與殼聚醣支架之實驗與分析
Experiment and Analysis on Waterborne Biodegradable Polyurethane and Chitosan Scaffold Fabricated by Frozen-Form Additive Manufacturing and Sacrificial Process using Phase Change of Water
指導教授: 廖昭仰
Chao-Yaug Liao
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 114
中文關鍵詞: 生物支架冷凍成型積層製造三維列印殼聚醣
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在組織工程製作生物支架上,積層製造相較於傳統製造方法擁有較快速客製化的能力。同時製作支架上也有較優異的控制能力,但是對於複雜的外型且有懸空的幾何形狀必須要有額外的支撐結構才可製作。而本研究選用冷凍成型積層製造製作水性可降解型聚胺酯以及殼聚醣支架,在支撐結構製作上以大範圍噴灑水溶液。利用水的三相變化,液態水溶液沉積至支架時將孔隙快速填充,當水溶液凝結成固態時有效的支撐。最後使用冷凍乾燥製程將冰塊昇華進而完全移除。


    Building biological scaffolds in tissue engineering, additive manufacturing (AM) has ability to customize more quickly than conventional manufactured methods. In this study, we built the waterborne biodegradable polyurethane and chitosan scaffolds by frozen-form additive manufacturing, which spray the aqueous solution over a wide area on the support structure. Utilizing the three-phase change of water, the pore space was rapidly filled with a liquid aqueous solution deposited on the scaffold, effectively supported the aqueous solution as it solidified. Finally, freeze-dry process was used to sublimation the ice and then completely remove the support structure.

    目錄 摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄 VI 第一章 緒論 1 1-1前言 1 1-2文獻回顧 2 1-3研究動機與目的 10 1-4論文架構 11 第二章 研究與理論說明 12 2-1組織工程簡介 12 2-2組織工程用積層製造簡介 16 2-3冷凍成型積層製造系統簡介 19 2-4殼聚醣與水性可降解型聚胺酯材料特性 30 第三章 研究方法 34 3-1冷凍成型積層製造系統之改良 34 3-2支架材料與支撐材料分析 39 3-3冷凍成型積層製造之流程 42 3-4支架路徑規劃 55 第四章 實驗結果與討論 62 4-1冷凍槽溫度分佈分析 62 4-2水支撐材料不同濃度之潛熱分析 66 4-3有無固態水支撐製作支架之分析 71 4-4複雜外型支架製作 85 4-5固態水支撐自動化除冰結果分析 86 第五章 結論與未來展望 93 5-1結論 93 5-2未來展望 94 參考文獻 95

    [1] 李宣書,淺談組織工程,物理雙月刊,2001。
    [2] B. Subia, J. Kundu and S. C. Kundu, “Biomaterial Scaffold Fabrication Techniques for Potential Tissue Engineering Applications”, Tissue Engineering, Vol. 524, pp. 141-158, 2010.
    [3] X. Yan and P. Gu, “A Review of Rapid Prototyping Technologies and Systems”, Computer-Aided Design, Vol. 28, pp. 307-318, 1996.
    [4] O. S. Carneiro, A. F. Silva and R. Gomes, “Fused Deposition Modeling with Polypropylene”, Materials and Design, Vol. 83, pp. 768-776, 2015.
    [5] P. M. Sokolsky, K. Agashi, A. Olaye, Andrew, K. M. Shakesheff and A. J. Domb, “Polymer Carriers for Drug Delivery and Tissue Engineering”, Advanced Drug Delivery Reviews, Vol. 59, pp. 187-206, 2007.
    [6] H. J. Yen, S. H. Hsu, C. S. Tseng, J. P. Huang and C. L. Tsai, “Fabrication of Precision Scaffolds using Liquid-Frozen Deposition Manufacturing for Cartilage Tissue Engineering”, Tissue Engineering Part A, Vol. 15, pp. 965-975, 2009.
    [7] L. Qian, A. Ahmed, L. Glennon-Alty, Y. Yang, P. Murray and H. Zhang, “Patterned Substrates Fabricated by a Controlled Freezing Approach and Biocompatibility Evaluation by Stem Cells”, Materials Science and Engineering C, Vol. 49, pp. 390-399, 2015.
    [8] Y. He, F. F. Yang, H. M. Zhao, Q. Gao, B. Xia and J. Z. Fu, “Research on the Printability of Hydrogels in 3D Bioprinting”, Scientific Reports, Vol. 6, 2016. Doi:10.1038/srep29977
    [9] S. H. Ahn, H. Lee, E. J. Leeb and G. H. Kim, “A Direct Cell Printing Supplemented with Low Temperature Processing Method for Obtaining Highly Porous Three-Dimensional Cell-Laden Scaffolds”, Journal of Materials Chemistry B, Vol. 2, pp. 2773-2782, 2014.

    [10] M. Adamkiewicz and B. Rubinsky, “Cryogenic 3D Printing for Tissue Engineering”, Cryobiology, Vol. 71, pp. 518-521, 2015.
    [11] S. Reed, G. Lau, B. Delattre, D. D. Lopez, A. P. Tomsia and B. M. Wu, “Macro-and Micro-Designed Chitosan-Alginate Scaffold Architecture by Three-Dimensional Printing and Directional Freezing”, Biofabrication, Vol. 8, 2016. Doi:10.1088/1758-5090/8/1/015003
    [12] J. S. Lee, J. M. Hong, J. W. Jung, J. H. Shim, J. H. Oh and D. W. Cho, “3D Printing of Composite Tissue with Complex Shape Applied to Ear Regeneration”, Biofabrication, Vol. 6, pp. 103-115, 2014.
    [13] X. F. Zheng, W. J. Zhai, Y. C. Liang and T. Sun, “Fabrication of Chitosan-Nanohydroxyapatite Scaffolds via Low-Temperature Deposition Manufacturing”, Journal of Inorganic Materials, Vol. 26, pp. 12-16, 2011.
    [14] K. C. Hung, C. S. Tseng and S. H. Hsu, “Synthesis and 3D Printing of Biodegradable Polyurethane Elastomer by a Water-Based Process for Cartilage Tissue Engineering Applications”, Advanced Healthcare Material, Vol. 10, pp. 1578-1587, 2014.
    [15] S. H. Hsu, K. C. Hung, Y. Y. Lin, C. H. Su, H. Y. Yeh, U. S. Jeng, C. Y. Lu, S. A. Dai, W. E. Fu and J. C. Lin, “Water-Based Synthesis and Processing of Novel Biodegradable Elastomers for Medical Applications”, Journal of Materials Chemistry B, Vol. 2, pp. 5083-5092, 2014.
    [16] 杜方傑,「組織工程用冷凍成型製造系統之自動化製作流程開發」,國立中央大學,碩士論文,民國104年。
    [17] 林研聖,「冷凍成型積層製造之機台設計與組織工程支架製作參數調校研究」,國立中央大學,碩士論文,民國104年。
    [18] 吳偉任,「組織工程用冷凍式積層製造之固態水支撐開發」,國立中央大學,碩士論文,民國105年。
    [19] C. Chung and J. A. Burdick, “Engineering Cartilage Tissue”, Advanced Drug Delivery Reviews, Vol. 60, pp. 243-262, 2008.
    [20] C. H. Lin, J. M. Su and S. H. Hsu, “Evaluation of Type II Collagen Scaffolds Reinforced by Poly(ε-Caprolactone) as Tissue-Engineered Trachea”, Tissue Engineering Part C: Methods, Vol. 14, pp. 69-77, 2008.
    [21] J. H. Park, J. W. Jung, H. W. Kang, Y. H. Joo, J. S. Lee and D. W. Cho, “Development of a 3D Bellows Tracheal Graft: Mechanical Behavior Analysis, Fabrication and an in vivo Feasibility Study”, Biofabrication, Vol. 4, 2012. Doi:10.1088/1758-5082/4/3/035004
    [22] F. D. Ning, W. L. Cong, J. J. Qiu, J. H. Wei and S. R. Wang, “Additive Manufacturing of Carbon Fiber Reinforced Thermoplastic Composites using Fused Deposition Modeling”, Composites Part B:Engineering, Vol. 80, pp. 369-378, 2015.
    [23] H. N. Chia and B. M. Wu, “Recent Advances in 3D Printing of Biomaterials”, Journal of Biological Engineering, Vol. 9, 2015. Doi:10.1186/s13036-015-0001-4
    [24] B. Dhariwala, E. Hunt and T. Boland, “Rapid Prototyping of Tissue-Engineering Constructs, using Photopolymerizable Hydrogels and Stereolithography”, Tissue Engineering, Vol. 10, pp. 1316-1322, 2004.
    [25] J. K. Sherwooda, S. L. Rileyb, R. Palazzoloa, S. C. Browna, D. C. Monkhousea, M. Coatesc, L. G. Griffithc, L. K. Landeenb and A. Ratcliffe, “A Three-Dimensional Osteochondral Composite Scaffold for Articular Cartilage Repair”, Biomaterials, Vol. 23, pp. 4739-4751, 2002.
    [26] H. Seitz, W. Rieder, S. Irsen, B. Leukers and C. Tille, “Three-Dimensional Printing of Porous Ceramic Scaffolds for Bone Tissue Engineering”, Journal of Biomedical Materials Research Part B:Applied Biomaterials, Vol. 74, pp. 782-788, 2005.
    [27] W. J. Kim, H. Lee, Y. B. Kim, C. H. Choi, D. W. Lee, H. Hwang and G. H. Kim, “Versatile Design of Hydrogel-Based Scaffolds with Manipulated Pore Structure for Hard-Tissue Regeneration”, Biofabrication, Vol. 11, 2016. Doi:10.1088/1748-6041/11/5/055002

    [28] Y. Z. Zhang, J. R. Venugopal, A. El-Turki, S. Ramakrishna, B. Su and C. T. Lim, “Electrospun Biomimetic Nanocomposite Nanofibers of Hydroxyapatite/Chitosan for Bone Tissue Engineering”, Biomaterials, Vol. 29, pp. 4314-4322, 2008.
    [29] R. S. Tigli and M. Gumusderelioglu, “Chondrogenesis on BMP-6 Loaded Chitosan Scaffolds in Stationary and Dynamic Cultures”, Biotechnology and Bioengineering, Vol. 104, pp. 601-610, 2009.
    [30] L. Ma, C. Gao, Z. Mao, J. Zhou, J. Shen, X. Hu and C. Han, “Collagen/Chitosan Porous Scaffolds with Improved Biostability for Skin Tissue Engineering”, Biomaterials Vol. 24, pp. 4833-4841, 2003.
    [31] T. T. Demirtaş1, G. Irmak and M. Gümüşderelioğlu, “A Bioprintable Form of Chitosan Hydrogel for Bone Tissue Engineering”, Biofabrication, Vol. 9, 2017. Doi:10.1088/1758-5090/aa7b1d
    [32] Y. Y. Lin, K. C. Hung and S. H. Hsu, “Stability of Biodegradable Waterborne Polyurethane Films in Buffered Saline Solutions”, Biointerphases, Vol. 10, 2015. Doi: 10.1116/1.4929357
    [33] Y. C. Wang, F. Fang, Y. K. Wu, X. L. Ai, T. Lan, R. C. Liang, Y. Zhang, N. M. Trishul , M. He, C. You, C. Yu and H. Tan, “Waterborne Biodegradable Polyurethane 3-Dimentional Porous Scaffold for Rat Cerebral Tissue Regeneration”, RSC Advances, Vol. 6, pp. 3840-3849, 2016.
    [34] D. L. Teagarden and D. S. Baker, “Practical Aspects of Lyophilization using Non-Aqueous Co-Solvent Systems”, European Journal of Pharmaceutical Sciences, Vol. 15, pp. 115-133, 2002.
    [35] K. Takaizumi, “A Curious Phenomenon in the Freezing-Thawing Process of Aqueous Ethanol Solution”, Journal of Solution Chemistry, Vol. 34, pp. 597-612, 2005.
    [36] H. K. Ross, “Concentrated Solutions of Hydroxy Compounds”, Industrial and Engineering Chemistry, Vol. 46, pp. 601-610, 1954.
    [37] D. R. Cordray, L. R. Kaplan, P. M. Woyciesjes and T. F. Kozak, “Solid-Liquid Phase Diagram for Ethylene Glycol Plus Water”, Fluid Phase Equilibria, Vol. 117, pp. 146-152, 1996.
    [38] 于新等,天然食品添加劑,中國輕工業出版社,中國,2014。

    QR CODE
    :::