| 研究生: |
李柏霆 Po-ting Lee |
|---|---|
| 論文名稱: |
矽基板上的氮化鎵磊晶術:以氧化鎵為緩衝 Growth of GaN on Si with Ga2O3 buffer layer |
| 指導教授: |
賴昆佑
Kun-Yu Lai |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 氧化鎵 、氮化鎵 、矽 、緩衝層 |
| 外文關鍵詞: | Ga2O3, GaN, Si, Buffer layer |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
以矽基板成長氮化鎵可降低氮化鎵光電元件的成本,但由於兩種材料的晶格常數與熱膨脹係數不匹配,需以適當的緩衝層來減輕磊晶層中的應力,本研究以單斜結構β氧化鎵作為氮化鎵在矽基板上的緩衝層,希望能開發出新的磊晶技術。
單斜結構β氧化鎵具有高穩定性等性質,並與氮化鎵僅有2.6%的晶格失配率,我們使用濺鍍系統,於矽<111>基板上沉積氧化鋅/氧化鎵緩衝層,再利用高溫氨氣環境退火,使氧化鎵與氨氣進行反應,進而生成氮化鎵薄膜。
藉由比較不同氧化鋅厚度,我們發現在未使用氧化鋅薄膜之試片並無法使氧化鎵與氨氣產生反應,這是由於氧化鋅可改變薄膜表面能量分布,導致缺陷產生,而缺陷的分子斷鍵會捕捉游離的氣態氮與鎵分子。另外我們調變退火時的時間與氨氣流量,發現較低的10sccm氨氣流量可以導致較高品質的氮化鎵,且過短的氨化時間並不足以使氮化鎵形成薄膜。
另外我們使用了MOCVD系統磊晶氮化鎵,並於磊晶前進行10分鐘通入氨氣的流程,加入此流程可使氮化鎵磊晶品質提高,另外在此製程下,使用氧化鋅插入層依然有效提高品質。
The growth of GaN on Si can reduce manufacturing cost of nitride-based optoelectronic devices. However, due to the significant mismatch in lattice constant and thermal expansion coefficient mismatch between GaN and Si, we need to use buffer layer to mitigate the strain in GaN epi-layers. This study investigates the possibility of employing monocline β-Ga2O3 as the buffer layer for the growth of GaN on Si.
The lattice mismatch between β-Ga2O3 and GaN is only 2.6%. In this project, we deposited ZnO/ β-Ga2O3 on Si <111> substrate, and nitridized the oxide layer in high-temperature NH3 ambience in order to attain a thin GaN layer for subsequent epitaxial growth.
It is found that inserting a ZnO layer between β-Ga2O3 and Si can improve the crystal quality of GaN. The result is attributed to the fact that ZnO thin film can change the surface energy of β-Ga2O3 to facilitate the bonding between Ga and N. The effect of ZnO thickness, annealing time, and NH3 flow rate on GaN epitaxy is analyzed.
We also grow GaN on ZnO/β-Ga2O3/Si with metal organic chemical vapor deposition. The GaN epi-layer is found be polycrystalline. Methods to enhance the epitaxial qualities are proposed.
[1] Suzuki, M, T. Uenoyama, A. Yana1se, “First-principles calculations of effective-mass parameters of AlN and GaN”, Physical Review B, 52(11), 8132-8139, 1995
[2] Hiroshi Amano, Masahiro Kito, Kazumasa Hiramatsu and Isamu Akasaki,
“P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron
Beam Irradiation”, Japanese Journal of Applied Physics Volume 28, pp.
L2112-L2114, 1989.
[3] 楊智喬,「三五族太陽能電池製作」,國立成功大學,碩士論文,
民國九十六年七月
[4] Ru, W., Junling, Z., Ruixia, Y., Xiujun, Z., Yongkuan, X., and Qiang, L. “Fabrication of RF-ZnO buffer for epitaxial GaN layer on Si (111) substrate.” In Information Science and Engineering (ICISE), 2010 2nd International Conference, pp. 5113-5116. IEEE, December 2010
[5] T. A. Rawdanowicz and J. Narayan, “Epitaxial GaN on Si(111): Process control of SiNx interlayer formation”, Applied physics letters 85, pp. 133, 2004.
[6] Shigefusa F. Chichibu, Akira Uedono, Takeyoshi Onuma, Benjamin A. Haskell et al, “Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors”, nature materials Volume 5, pp. 810 - 816 , 2006.
[7] Chrisey, Douglas B., and Graham K. Hubler. " Pulsed Laser Deposition of Thin Films " , by Douglas B. Chrisey (Editor), Graham K. Hubler (Editor), pp. 648. ISBN 0-471-59218-8. Wiley-VCH, May 2003.
[8] Kim, S. T., Lee, Y. J., Chung, S. H., & Moon, D. C.” Properties of Free-Standing GaN Prepared by I-IVPE Using AIN/Si Substrate”. JOURNAL-KOREAN PHYSICAL SOCIETY, 33, S313-S315. 1998
[9] Gu, X., Reshchikov, M. A., Teke, A., Johnstone, D., Morkoc, H., Nemeth, B., & Nause, J.” GaN epitaxy on thermally treated c-plane bulk ZnO substrates with O and Zn faces.” Applied physics letters, 84(13), 2268-2270, 2004
[10] He, H., Fan, Z., Yao, Z., & Tang, Z.. “Sputtering of ZnO buffer layer on Si for GaN blue light emitting materials”. Science in China Series E: Technological Sciences, 43(1), 55-59, 2000
[11] Man, B. Y., Yang, C., Zhuang, H. Z., Liu, M., Wei, X. Q., Zhu, H. C., & Xue, C. S. “Effects of ZnO buffer layers on the fabrication of GaN films using pulsed laser deposition”. Journal of applied physics, 101(9), 093519. 2007
[12] Black, K., Jones, A. C., Chalker, P. R., Gaskell, J. M., Murray, R. T., Joyce, T. B., & Rushworth, S. A. “MOCVD of ZnO thin films for potential use as compliant layers for GaN on Si”. Journal of Crystal Growth, 310(5), 1010-1014.2008
[13] Ji, X. H., & Zhai, J. W. “Growth of GaN films on Si (100) buffered with ZnO by ion-beam-assisted filtered cathodic vacuum arc technique”. Journal of Electronic Materials, 37(5), 573-577.2008
[14] Janowitz, C., Scherer, V., Mohamed, M., Krapf, A., Dwelk, H., Manzke, R., ... & Van de Walle, C. G. “Experimental electronic structure of In2O3 and Ga2O3”. New Journal of Physics, 13(8), 085014. 2011
[15] Wang, J., Zhuang, H. Z., Li, B. L., & Li, J. L. “Synthesis of GaN nanowires by ammoniation of Ga2O3 films on Nb layer deposited on Si (111) substrates”. Materials Science in Semiconductor Processing, 13(3), 205-208. 2010
[16] Shi, F., Wang, Z., & Xue, C.. “Influence of nitridation time on microstructure, morphology and optical properties of GaN nanowires by nitridizing Ga2O3/Cr thin films”. International Journal of Materials Research,102(5), 521-524. 2011
[17] Xue, C., Wang, Y., Zhuang, H., Wang, Z., Huang, Y., Zhang, D., & Cao, Y. “Fabrication of GaN nanowires by ammoniating Ga2O3/NiCl2 films deposited on Si substrates”. Journal of Alloys and Compounds, 484(1), 33-35. 2009
[18] Xu, Q. J., Zhang, S. Y., & Zhuang, H. Z. “Synthesis of Probe-Shaped GaN Nanorods by Ammoniating Ga2O3/Mo Films.” Current Nanoscience, 5(3), 289-292. 2009
[19] Ai, Y., Xue, C., Sun, C., Sun, L., Zhuang, H., Wang, F. & Chen, J. “Synthesis of GaN nanowires through Ga2O3 films' reaction with ammonia”. Materials Letters, 61(13), 2833-2836. 2007
[20] Xue, S., Zhang, X., Huang, R., & Zhuang, H. “A study on a two-step technique of growing Ga2O3/ZnO films ammoniated at different temperatures.” Physica E: Low-dimensional Systems and Nanostructures, 41(3), 460-464.2009
[21] Huizhao, Z., Baoli, L., Dexiao, W., Jiabing, S., Shiying, Z., & Chengshan, X. “Optical and Micro-structural Properties of GaN Nanowires by Ammoniating Ga2O3/Nb Films”. Rare Metal Materials and Engineering, 38(4), 565-569. 2009.
[22] Lee, S. A., Hwang, J. Y., Kim, J. P., Jeong, S. Y., & Cho, C. R. “Dielectric characterization of transparent epitaxial Ga 2 O 3 thin film on n-GaN/Al 2 O 3 prepared by pulsed laser deposition”.Applied physics letters,89(18), 182906-182906. 2006.
[23] Yang, L., Xue, C., Wang, C., & Li, H.. “Growth of GaN nanowires by ammoniating Ga2O3 thin films deposited on quartz with radio frequency magnetron sputtering”. Nanotechnology, 14(1), 50.2003.
[24] Zhang, C. G., Bian, L. F., Chen, W. D., & Hsu, C. C.. “Effects of ZnO interlayers on thick GaN/Si film prepared by RF magnetron sputtering.” Journal of crystal growth, 293(2), 258-262. 2006
[25] Quirk, Michael, and Julian Serda, Semiconductor manufacturing technology,半導體製造技術,Vol. 1, 羅文雄,蔡榮輝,鄭岫盈Upper Saddle River, NJ: Prentice Hall, 2001.
[26] EUCLID TECHLABS Thick Film Ceramic/Dielectric Sputtering Metallization Technology, http://www.euclidtechlabs.com/product/sputtering.php
[27] 郭峰鳴,「MOCVD反應器之氮化鎵薄膜成長參數探討」,國立中山大學機械與機電工程研究所碩士論文
[28] Rinku P. Parikh, Raymond A. Adomaitis, “An overview of gallium nitride growth chemistry and its effect on reactor design: Application to a planetary radial-flow CVD system”, Journal of Crystal Growth Volume 286, pp.259-278, 2006.
[29] 林麗娟,「X光繞射原理及其應用」,工業材料86期,pp100-109,83年2月
[30] Nanotechnology and Nanomaterials "Nanowires - Fundamental Research", book edited by Abbass Hashim, ISBN 978-953-307-327-9, CC BY-NC-SA 3.0 license, July 19, 2011
[31] 鄧建龍、姚潔宜、張茂南,「X光繞射分析在半導體工業上的應用」,奈米通訊第十五卷第四期,2008.12
[32] 林信甫,「以氧化鋅薄膜輔助成長於矽基板上的氮化鎵磊晶層」,中央大學光電科學與工程學系碩士論文,民國102年10月
[33] 黃英碩,「掃描探針顯微術的原理及應用」, 科儀新知第二十六卷第四期,pp.7-17,民國94年2月
[34] 謝嘉民、賴一凡、林永昌、枋志堯,「光激發光螢光量測的原理、架構及應用」,奈米通訊第十二卷第二期,pp.28-38,94年5月
[35] Joint Committee on Powder Diffraction Standards (JCPDS). Powder Diffraction File, Card No. 01-075-0576, Swarthmore, PA.
[36] Joint Committee on Powder Diffraction Standards (JCPDS). Powder Diffraction File, Card No. 43-1012, Swarthmore, PA.
[37] Chen, C., Yu, B., Liu, J., Dai, Q., & Zhu, Y.. “Investigation of ZnO films on Si< 111> substrate grown by low energy O+ assisted pulse laser deposited technology”. Materials letters, 61(14), 2961-2964. (2007)