跳到主要內容

簡易檢索 / 詳目顯示

研究生: 梁晏彰
Yen-Chang Liang
論文名稱: 分析不同微物理參數化之系集預報誤差: SoWMEX-IOP8 對流個案
Analysis of Ensemble Forecast Error in Different Microphysics Schemes:Thunderstorm during SoWMEX-IOP8
指導教授: 鍾高陞
Kao-Shen Chung
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 大氣科學學系
Department of Atmospheric Sciences
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 110
中文關鍵詞: 系集預報微物理參數化誤差相關性方差
外文關鍵詞: Ensemble Forecast, Microphysics Scheme, error correlation, variance
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 研究中共使用四種微物理參數化方案,兩種單矩量參數化方案:Goddard(GCE)、WRF SM 6-category(WSM6)及兩種雙矩量方案:WRF DM 6-category(WDM6)、Morrison(MOR),四種方案分別進行系集預報,藉此了解不同微物理參數化方案搭配系集預報的特性。研究中利用2008年6月16日台灣北部熱對流個案,探討對流成熟期時,強對流區的模式離散程度和背景誤差協方差,了解透過系集資料同化系統,觀測如何影響相關模式變數。
    結果顯示,GCE有最強的冰相混合比,因此回波發展最高;在低層暖雨過程,雖然WDM6有最大雨混合比但回波卻是最弱的,而MOR混合比雖沒有特別大,然而回波卻是最強的,原因為WDM6預報出現大量的粒子數量,而MOR的粒子數量則是最少的,因此導致上述的結果。此結果顯示使用雙矩量微物理方案時,不可忽視粒子數量所帶來的影響,而雨滴粒子數量不只影響回波,降雨、蒸發效率、溫度甚至冷池都可能因為不同雨滴大小、數量而有不同表現。
    根據不同微物理參數化設定,在方差分布也有不一樣的特徵,GCE在高層有較多的不確定性,WDM6在低層有最大的離散程度,而MOR在融化層附近有最大的方差。研究中發現GCE在冰相有較多不確定性,WDM6則在暖雨過程離散程度較大,因此在進行系集資料同化時,使用這兩種微物理參數化法,可在有限的系集個數下,有效地增加系集間的離散度。
    研究中亦討論不同變數間的誤差相關性,在對流區,垂直風與潛熱釋放有高度相關性,可能原因為強風速提高粒子間相態轉換,隨之釋放的潛熱又提高風速;此外在MOR的回波自相關中也可以看到粒子數量所帶來的影響。


    To understand the characteristics of different microphysics schemes and investigate the forecast error structure in very short-term forecast, four microphysics schemes are used in the study. They include two single-moment schemes: Goddard(GCE)、WRF SM 6-category(WSM6), and two double-moment schemes of WRF DM 6-category(WDM6) and Morrison(MOR). A thunderstorm case in northern Taiwan on June 16, 2008 is selected.
    The results show that GCE has the most ice-related mixing ratio, so the reflectivity development is the highest. In the low-level warm rain process, WDM6(MOR) has the most(fewest) rain mixing ratio and the weakest(strongest) reflectivity due to large(small) number of rain total number concentration. It is found that when using the double-moment microphysics scheme, the influence of the total number concentration cannot be ignored.
    According to different microphysics scheme settings, the variance also has different characteristics. With the same ensemble members (36), it is found that GCE(WDM6) has more uncertainty in ice-related processes (warm rain processes). Therefore, using combination of these two schemes can effectively increase ensemble spread and improve the benefits of data assimilation.
    The error correlation between different variables is also discussed in the study. In the convective zone, the vertical wind and the latent heat release are highly correlated. The possible reason is that the strong vertical wind increases the phase transition between the particles, and the latent heat released enhances the vertical wind again. In addition, the reflectivity auto-correlation in MOR is greatly affected by the number of particles around melting layer.

    內容 摘要 v Abstract vi 第一章 : 緒論 1 1.1 文獻回顧 1 1.2 研究動機 3 第二章 : 個案簡介 5 第三章 : 實驗設計 6 3.1 模式初始場 6 3.2 模式設定 6 3.3 微物理參數化簡介 7 3.3.1 GCE 8 3.3.2 WSM6 8 3.3.3 WDM6 9 3.3.4 MOR 9 3.4 研究方法 10 3.4.1方差 10 3.4.2誤差相關係數 11 第四章 : 結果討論 12 4.1 利用決定性預報討論不同參數化異同 12 4.1.1系統發展與降雨 12 4.1.2各變數垂直結構隨時間變化 12 4.1.3雨滴粒子數量 14 4.2 系集預報表現 15 4.2.1 系集平均狀態及比較 15 4.2.2 回波、混合比、雨滴粒徑至降雨之關係 16 4.2.3 溫度比較 19 4.3 方差結果 20 4.3.1 微物理變數方差 20 4.3.2 動力變數及熱力變數方差 22 4.3.3 水平溫度方差 22 4.3.4 水平風方差 23 4.4 誤差相關性 23 4.4.1 回波之誤差相關性 24 4.4.2 垂直風之誤差相關性 25 4.5 解析度比較 25 4.6 方差及誤差相關性對資料同化效益討論 26 第五章 : 結論 28 5-1總結 28 5-2 未來展望 30 參考文獻 31 附錄 35 PM (Probability Matched mean) 35

    簡芳菁、洪玉秀,2010:梅雨季西南氣流氣候平均與個案之數值研究。大氣科
    學, 38,237-267。
    陳勁宏,2018:不同微物理方案在雲可解析模式的系集預報分析:SoWMEX-
    IOP8個案。中央大學大氣物理研究所碩士論文。
    盧可昕,2018:利用雙偏極化雷達及雨滴譜儀觀測資料分析2008年西南氣流
    實驗期間強降雨事件的雲物理過程。中央大學大氣物理研究所碩士碩士論文。
    陳立昕,2017:利用系集法估計與檢驗對流尺度之預報誤差:SoWMEX IOP8
    個案分析。中央大學大氣物理研究所碩士碩士論文。
    曾昭誠,2017:利用2016年TASSE實驗期間X-band雷達資料反演及分析雨
    滴粒徑分布特性。中央大學大氣物理研究所碩士碩士論文。
    繆炯恩,2017 : 2015 年 6 月 14 日臺北盆地劇烈午後雷暴個案之高解析度模
    擬研究。台灣大學大氣科學研究所碩士論文。
    Chung, K.-S., W. Chang, L. Fillion, and M. Tanguay, 2013: Examination of Situation-
    Dependent Background Error Covariances at the Convective Scale in the Context of the Ensemble Kalman Filter. Mon. Wea. Rev., 141, 3369-3387.
    Dowell, D. C., F. Zhang, L. J. Wicker, C. Snyder, and N. A. Crook,
    2004: Wind and Temperature Retrievals in the 17 May 1981 Arcadia, Oklahoma, Supercell: Ensemble Kalman Filter Experiments. Mon. Wea. Rev., 132, 1982-2005.
    Ebert, Elizabeth E., 2001: Ability of a poor man’s ensemble to
    predict the probability and distribution of precipitation. Mon. Wea. Rev., 129, 2461-2480
    Ferrier, B. S., W.-K. Tao, and J. Simpson, 1995: A Double-Moment
    Multiple-Phase Four-Class Bulk Ice Scheme. Part II: Simulations of Convective Storms in Different Large-Scale Environments and Comparisons with other Bulk Parameterizations. Journal of the Atmospheric Sciences, 52, 1001-1033.
    Fresnay, S., Hally, A., Garnaud, C., Richard, E., and Lambert, D.:
    Heavy precipitation events in the Mediterranean: sensitivity to cloud physics parameterisation uncertainties, Nat. Hazards Earth Syst. Sci., 12, 2671-2688, https://doi.org/10.5194/nhess-12-2671-2012, 2012.
    Gilmore, M. S., J. M. Straka, and E. N. Rasmussen, 2004:
    Precipitation Uncertainty Due to Variations in Precipitation Particle Parameters within a Simple Microphysics Scheme. Mon. Wea. Rev., 132, 2610-2627.
    Ha, S., J. Berner, and C. Snyder, 2015: A Comparison of Model Error
    Representations in Mesoscale Ensemble Data Assimilation. Mon. Wea. Rev., 143, 3893-3911.
    Houtekamer, P. L., L. Lefaivre, J. Derome, H. Ritchie, and H. L.
    Mitchell, 1996: A System Simulation Approach to Ensemble Prediction. Mon. Wea. Rev., 124, 1225-1242.
    McCumber, M., W.-K. Tao, J. Simpson, R. Penc, and S.-T. Soong, 1991:
    Comparison of Ice-Phase Microphysical Parameterization Schemes Using Numerical Simulations of Tropical Convection. Journal of Applied Meteorology, 30, 985-1004.
    Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of Cloud
    Microphysics on the Development of Trailing Stratiform Precipitation in a Simulated Squall Line: Comparison of One- and Two-Moment Schemes. Mon. Wea. Rev., 137, 991-1007.
    Snyder, C., and F. Zhang, 2003: Assimilation of Simulated Doppler
    Radar Observations with an Ensemble Kalman Filter. Mon. Wea. Rev., 131, 163-1677.
    Tapiador, F. J., and Coauthors, 2011: A Comparison of Perturbed
    Initial Conditions and Multiphysics Ensembles in a Severe Weather Episode in Spain. Journal of Applied Meteorology and Climatology, 51, 489-504.
    Tong, M., and M. Xue, 2005: Ensemble Kalman Filter Assimilation of
    Doppler Radar Data with a Compressible Nonhydrostatic Model: OSS Experiments. Mon. Wea. Rev., 133, 1789-1807.
    Xue, M., Y. Jung, and G. Zhang, 2010: State estimation of convective
    storms with a two-moment microphysics scheme and an ensemble Kalman filter: Experiments with simulated radar data. Quarterly Journal of the Royal Meteorological Society, 136, 685-700.
    Yussouf, N., and D. J. Stensrud, 2011: Comparison of Single-Parameter
    and Multiparameter Ensembles for Assimilation of Radar Observations Using the Ensemble Kalman Filter. Mon. Wea. Rev., 140, 562-586.
    Hong, S. Y., and J. O. J. Lim, 2006: The WRF single-moment 6-class microphysics
    scheme (WSM6). Vol. 42, 129-151 pp.
    Jr, R., R. M. Rasmussen, and R. Bruintjes, 1998: Explicit forecasting of supercooled
    liquid water in winter storms using the MM5 mesoscale model. Vol. 124, 1071-1107 pp.
    Lee, M.-T., Lin, P.-L., and Chang, W.-Y., 2019: Microphysical Characteristics
    and Types of Precipitation for Different Seasons over North Taiwan.J. Meteor. Soc. Japan
    Lim, K.-S. S., and S.-Y. Hong, 2009: Development of an Effective Double-Moment
    Cloud Microphysics Scheme with Prognostic Cloud Condensation Nuclei (CCN) for Weather and Climate Models. Mon. Wea. Rev., 138, 1587-1612.
    Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk Parameterization of the Snow
    Field in a Cloud Model. Journal of Climate and Applied Meteorology, 22, 1065-1092.
    Martin, G. M., D. W. Johnson, and A. Spice, 1994: The Measurement and
    Parameterization of Effective Radius of Droplets in Warm Stratocumulus Clouds. Journal of the Atmospheric Sciences, 51, 1823-1842.
    Morrison, H., J. A. Curry, and V. I. Khvorostyanov, 2005: A New Double-Moment
    Microphysics Parameterization for Application in Cloud and Climate Models. Part I: Description. Journal of the Atmospheric Sciences, 62, 165-1677.
    Rutledge, S. A., and P. Hobbs, 1983: The Mesoscale and Microscale Structure and
    Organization of Clouds and Precipitation in Midlatitude Cyclones. VIII: A Model for the “Seeder-Feeder” Process in Warm-Frontal Rainbands. Journal of the Atmospheric Sciences, 40, 1185-1206.
    Tao, W.-K., J. Simpson, and M. McCumber, 1989: An Ice-Water Saturation
    Adjustment. Mon. Wea. Rev., 117, 231-235.
    Tao, W.-K., and Coauthors, 2011: The impact of microphysical schemes on hurricane
    intensity and track. Asia-Pacific Journal of Atmospheric Sciences, 47, 1-16.
    Yang, S.-C., S.-H. Chen, S.-Y. Chen, C.-Y. Huang, and C.-S. Chen,
    2014: Evaluating the Impact of the COSMIC RO Bending Angle Data on Predicting the Heavy Precipitation Episode on 16 June 2008 during SoWMEX-IOP8. Mon. Wea. Rev., 142, 4139-4163.

    QR CODE
    :::