跳到主要內容

簡易檢索 / 詳目顯示

研究生: 胡佐國
Tzuo-Guo Hu
論文名稱: LED光譜特性分析與優化
Characterization and Optimization on LED Emission Spectrum
指導教授: 楊宗勳
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 106
中文關鍵詞: 光譜優化發光二極體
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文由分析光譜擬合特性參數並優化,得到不同色溫下最佳演色性之光譜。從實驗室以往累積的光譜資料與模型為基礎,藉由擬合光譜,找出特性參數之關係趨勢與限制範圍,並藉由基因演算法得到不同色溫下最佳演色性之光譜組成。利用此種方式,將特性參數條件增加,能找到不同LED更真實存在的最佳演色性光譜。


    In this thesis, the LED spectrum with optimal chromatic characteristics has been obtained for various correlated color temperature. First, it is found that the general LED spectrum can be represented by 10 featured parameters. As fitting the spectrum to the LED spectral model, all the 10 featured parameters are easily to extract. Then, the possible range for these 10 featured parameters is discussed. Finally, the optimal LED spectra for every CCT is obtained by the global optimization algorithm.

    中文摘要 I Abstract II 致謝 III 目錄 V 圖目錄 VIII 表目錄 XIII 第一章 緒論 1 1-1 研究背景 1 1-2 研究動機與目的 5 第二章 基礎理論 6 2-1 色彩學 6 2-1-1 CIE 1931 XYZ色彩空間 7 2-1-2 CIE 1960&1976 UCS色彩空間 9 2-1-3 黑體輻射與相關色溫 10 2-1-4 演色性 13 2-2 LED結構 15 2-3 YAG:Ce3+螢光粉之光學性質 16 2-3-1 YAG:Ce3+能階結構 17 2-3-2 激發頻譜、輻射頻譜與光譜擬合 19 2-4 LED混色公式 22 第三章 光譜特性分析 24 3-1 藍光光譜 26 3-2 螢光粉輻射光譜 28 第四章 最佳演色性白光光譜 33 4-1 全域優化 33 4-2 優化結果 34 4-3 優化條件限制 39 4-3-1 依數據分析限制 42 4-3-2 依物理分析限制 50 4-3-3固定藍光半高全寬 55 4-4 討論分析 59 4-5總結 63 第五章 結論 67 附錄A 積分球架構 70 A-1 積分球 70 A-2 系統校正 71 A-2-1 波長校正 72 A-2-2 強度校正 74 參考文獻 79 中英文名詞對照表 85

    1. N. Holonyak, Jr., and S. F. Bevaqua, “Coherent(visible) light emission from Ga(As1–xPx) junctions,” Appl. Phys. Lett. 1, 82-83 (1962).
    2. S. Nakamura and G. Fasol, The Blue Laser Diode: GaN Vased Light Emitters and Lasers (Springer, Berlin, 1997).
    3. Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi, “Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material,” United States Patent, US 5998925 (1999).
    4. S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64, 1687-1689 (1994).
    5. C. H. Chang, Y. T. Wu, H. C. Li, “Lateral light-emitting diode backlight module,” United States Patent , US 7919789B2(2007).
    6. G. Wyszecki, W.S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley Classic Library, New York, 2000).
    7. Comité International des Poids et Mesures, “The International practical temperature scale of 1968,” Metrologia,5 no.2,1969.
    8. A. Corrons and A. Pons, “Daylight simulator,” OSA Applied Optics Vol. 26, Issue 14, 2867-2870 (1987).
    9. E. F. Schubert, Light Emitting Diode (Cambridge UniversityPress, Cambridge,2003)
    10. Inter1national Commission on Illumination, CIE 13.3: Technical Report: Method of Measuring and Specifying Colour Rendering Properties of Light Sources (CIE, Vienna, 1995).
    11. D. A. Neamen, Semiconductor Physics and Devices: Basic Principles 108 (McGraw-Hill, New York, 2003).
    12. P. Smet, A. Parmentier, and D. Poelman, “Selecting conversion phosphors for white light-emitting diodes,” Journal of The Electrochemical Society, 158 (6) R37-R54(2011).
    13. 國立中央大學光電科學與工程學系,光電科技概論,初版,五南圖書出版股份有限公司,台北市,中華民國九十七年
    14. S. Muthu, “Controlling method and system for RGB based LED luminary,”United States Patent, US 6507159 (2003).
    15. S. Muthu, F. J. P. Schuurmans, and M. D. Pashley, “Red, green, and blue LEDs for white light illumination,” IEEE J. Sel. Top. Quantum Electron. 8, 333-338 (2002).
    16. A. A. Setlur, A. M. Srivastava, H. A. Comanzo, and D. D. Doxsee, “Phosphor blends for generating white light from near-UV/blue light-emitting devices,”United States Patent, US 6685852 B2 (2004).
    17. H. Wu, X. Zhang, C. Guo, J. Xu, M. Wu, and Q. Su, “Three-band white light from InGaN-based blue LED chip precoated with Green/red phosphors,” IEEE Photon. Technol. Lett. 17, 1160-1162 (2005).
    18. N. Kimura, K. Sakuma, S. Hirafune, K. Asano, and N. Hirosaki, “Extrahigh color rendering white light-emitting diode lamps using oxynitride and nitride phosphors excited by blue light-emitting diode,” Appl. Phys. Lett. 90, 051109 (2007).
    19. N. Kimura, K. Sakuma, S. Hirafune, and K. Asano, “Extrahigh color rendering white light-emitting diode lamps using oxynitride and nitride phosphors excited by blue light-emitting diode,” Appl. Phys. Lett. 90, 051109 (2007).
    20. R. J. Xie, N. Hirosaki, M. Mitomo, K. Takahashi, and K. Sakuma, “Highly efficient white-light-emitting diodes fabricated with short wavelength yellow oxynitride phosphors,” Appl. Phys. Lett. 88, 101104 (2006).
    21. H.S. Jang , Y.-H. Won, D.Y. Jeon, “Improvement of electroluminescent property of blue LED coated with highly luminescent yellow-emitting phosphors,” Appl Phys B 95,715–720(2009).
    22. J. K. Sheu, S. J. Chang, C. H. Kuo, Y. K. Su, L.W. Wu, Y. C. Lin, W. C. Lai, J. M. Tsai, G. C. Chi, and R. K. Wu, “White-light emission from near UV InGaN/GaN LED chip precoated with blue/green/red phosphors,” IEEE Photon. Technol. Lett. 15, 18-20 (2003).
    23. T. F. McNulty, B. Lake, D. D. Doxsee, S. Hills, and J. W. Rose, “UV reflectors and UV-based light sources having reduced UV radiation leakage incorporating the same,” United States Patent, US 6686676 B2 (2004).
    24. K. Bando, K. Sakano, Y. Noguchi, and Y. Shimizu, “Development of high-bright and pure-white LED lamps,” J. Light & Visual Environment 22 ,3-5(1998).
    25. J. Gracia, L. Seijo, Z. Barandiarán, D. Curulla, H. Niemansverdriet, and W. van Gennip, “Ab initio calculations on the local structure and the 4f–5d absorption and emission spectra of Ce3+-doped YAG,” J. Lumines. 128, 1248-1254 (2008).
    26. M. Batentschuk, B. Schmitt, J. Schneider, and A. Winnacker, “Color engineering of garnet based phosphors for luminescence conversion light emitting diodes (lucoleds),” Proc. MRS 560, 215 (1999).
    27. V. Bachmann, C. Ronda, and A. Meijerink, “Temperature quenching of yellow Ce3+ luminescence in YAG: Ce,” Chem. Mater. , 21, 2077–2084(2009).
    28. G. Xia, S. Zhoua,, J. Zhanga, J. Xua, “Structural and optical properties of YAG:Ce3+ phosphors by sol–gel combustion method,” Journal of Crystal Growth 279, 357–362(2005).
    29. P. Vitta, P. Pobedinskas, and A. Zukauskas, “Phosphor Thermometry in White Light-Emitting Diodes,” IEEE Photonics Technology Letters, VOL. 19, NO. 6,399-401(2007).
    30. 孔祥仁,高功率白光LED封裝之螢光粉特性之研究,國立中央大學光電科學研究所碩士論文,中華民國九十八年。
    31. D. J. Robbins, B. Cockayne, B. Lent, and J. L. Glasper, “The relationship between concentration and efficiency in rare earth activated phosphors,” J. Electrochem. Soc. 126, 1556-1563 (1979).
    32. R. Turos-Matysiak, W. Gryk, M. Grinberg, Y. S. Lin ,and R. S. Liu, “Tb3+ → Ce3+ energy transfer in Ce3+-doped Y3−xTbxGd0.65Al5O12,” J. Phys.: Condens. Matter 18 10531–10543(2006).
    33. J. K. Park, C. H. Kim, S. H. Park, and H. D. Park, “Application of strontium silicate yellow phosphor for white light-emitting diodes,” Applied Physics Letters 84, 1647 (2004).
    34. V. Tucureanu, A. Matei, and A.M. Avram, “Synthesis and characterization of YAG: Ce phosphors for white LEDs,” Opto−Electronics Review 23(4), 239–251.
    35. 蕭愷緯,散射粒子在螢光轉換白光LED中對光色特性之影響,國立中央大學光電科學研究所碩士論文,中華民國一百零六年。
    36. S. Nishiura , S. Tanabe, K. Fujioka, and Y. Fujimoto, “Properties of transparent Ce: YAG ceramic phosphors for white LED,” Optical Materials 33 688–691(2011).
    37. X. G. Ma, X. Y. Li, J. Q. Li, C. Genevois, B.Q. Ma, A. Etienne, C. L. Wan, E. Véron, Z. Peng & M. Allix, “Pressureless glass crystallization of transparent yttrium aluminum garnet-based nanoceramics,” Nature Communications 9, Article number: 1175 (2018).
    38. 鄭翰翔,白光LED加速老化之光輻射特性之研究,國立中央大學光電科學研究所碩士論文,中華民國一百零三年。
    39. 紀詔元,高功率 LED光電熱色特性整合模型之研究,國立中央大學光電科學研究所碩士論文,中華民國一百零一年。
    40. 唐健碩,高功率LED光電熱色動態行為特性之研究,國立中央大學光電科學研究所碩士論文,中華民國一百零三年。
    41. 周虹宇,發光二極體譜特性之模型建立與維持穩定,國立中央大 學光電科學與工程系博士論文,中華民國一百年。
    42. J. S. R. Jang, C. T. Sun, and E. Mizutani, Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence (Englewood Cliffs, NJ: Prentice-Hall, 1987).
    43. F. Grum, S. B. Saunders, D. L. Macadam, Concept of correlated color temperature (Wiley Periodicals, Inc., A Wiley Company,2007)
    44. W. S. Mokrzycki , M. Tatol , Colour difference ∆E - A survey (Machine Graphic & Vision,2012).
    45. Labsphere, Inc., Duraflect reflectance coating, http://www.labsphere.com.cn/uploads/datasheets/duraflect-product-sheet.pdf.
    46. Newport, Inc., https://www.newport.com/t/integrating-sphere-fundamentals-and-applications.
    47. Newport, Inc., https://www.newport.com/f/pencil-style-calibration-lamps.

    QR CODE
    :::