| 研究生: |
蔡尹佳 Yin-Chia Tsai |
|---|---|
| 論文名稱: |
應用於波長650-nm及850-nm之標準CMOS製程矽光檢測器 |
| 指導教授: |
辛裕明
Yue-Ming Hsin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 光檢測器 |
| 外文關鍵詞: | photodiode |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用標準CMOS製程實現矽光檢測器,當入射光波長為650-nm時,由於光的吸收深度較接近元件表層的操作區,而基板產生之擴散載子可減少對頻率響應的影響。透過Silvaco公司之二維元件模擬軟體研究,相較於入射光波長為850-nm,又用於波長為650-nm時,可改善擴散載子造成之頻率響應滑落(roll-off)的情形,進而提升3-dB頻寬。同時針對不同的元件結構設計,分別為水平式之累崩光檢測器以及具Deep n-well之光檢測器,分別將其應用於不同入射光波長且操作在累崩區來做比較。最後利用0.25 µm標準CMOS 高壓製程實現多層PN接面之矽光檢測器,並針對不同深度之PN接面作進一步的分析,透過不同波長的光具有不同吸收深度之特性,使得不同深度之PN接面對應不同波長具有特性的差異。另外也利用光脈衝響應之量測,研究不同元件對脈衝的反應,分析長尾巴效應(long tail effect)的影響。
This study presents photodetectors (PDs) implemented in standard CMOS technology. Due to the penetration depth of the 650-nm-wavelength light into Si is close to the depth of the depletion in the surface p-n diodes, which can reduce the frequency response of the PD degraded by the slow diffusion carriers. Silvaco TCAD simulation was used to verify that the diffusion roll-off in PD could be improved by reducing the diffusion component of photo-current at 650-nm wavelength. Furthermore, this study compared different device structures including avalanche photodetectors and photodetectors with deep n-well implantation. Finally, the photodetectors with different p-n junction depth implemented in standard 0.25 µm CMOS high voltage technology are discussed. The different wavelength performance of photodetectors with different p-n junction depth results from the characteristics of the penetration depth of light in silicon is wavelength-dependent. Besides, long tail effect was analyzed by the pulse measurement.
[1] H. J. R. Dutton, “Understanding Optical Communications,” 1998.
[2] Yasuhiro Koike, Kotaro Koike, "Progress in Low-Loss and High-Bandwidth Plastic Optical Fibers," Journal of Polymer Science Part B: Polymer Physics, vol. 49, no. 1, pp. 2–17, Jan. 2011 .
[3] Mohammad Syuhaimi Ab-Rahman, Hadi Guna, Mohd Hazwan Harun and Kasmiran Jumari, "A Novel Star Topology POF-WDM System, "Business, Engineering and Industrial Applications (ISBEIA 2011), Sep. 2011.
[4] S. Höll, M.Haupt, U.H.P. Fischer, "Injection Molding of a WDM System for POF Communication," Electronic Components and Technology Conference (ECTC 2013), May 2013.
[5] Toshihiko Komine, and Masao Nakagawa, “Integrated system of white LED visible-light communication and power-line communication,” IEEE Trans. on Consumer Electron., vol. 49, no. 1, pp. 71-79, Feb. 2003.
[6] Fang-Ming Wu, Chun-Ting Lin, Chia-Chien Wei, Cheng-Wei Chen, Hou-Tzu Huang, and Chun-Hung Ho, “1.1-Gb/s white-LED-based visible light communication employing carrier-less amplitude and phase modulation,” IEEE Photon. Technol. Lett., vol. 24, no. 19, pp. 1730-1732, Oct. 2012.
[7] Shinichiro Haruyama, “Visible light communication using sustainable led lights,” ITU Kaleidoscope Academic Conf., pp. 1-6, 2013.
[8] Chun-Yu Lin, Ying-Pyng Lin, Hai-Han Lu, Chia-Yi Chen, Tai-Wei Jhang, and Min-Chou Chen, “Optical free-space wavelength-division-multiplexing transport system,” Optics Letters, vol. 39, no. 2, Jan. 2014
[9] K. Iiyama, et al., "Silicon Lateral Avalanche Photodiodes Fabricated by Standard 0.18 μm CMOS Process," European Conference on Optical Communication (ECOC 2009), Sep. 2009.
[10] Myung-Jae Lee, Holger R¨ucker and Woo-Young Choi, "Optical-Power Dependence of Gain, Noise, and Bandwidth Characteristics for 850-nm CMOS Silicon Avalanche Photodetectors," IEEE Journal of Selected Topics in Quantum Electronics, vol. 20, no. 6, Nov.-Dec. 2014.
[11] Yunzhi Dong and Kenneth W. Martin, "High-Speed Fully-Integrated POF Receiver With Large-Area Photo Detectors in 65 nm CMOS," IEEE Journal of Solid-State Circuits, vol. 47, no. 9, pp. 2080-2092, Sep. 2012.
[12] M. Davidovic, T. Wimbauer and H. Zimmermann, "pin photodiode in 0.15 μm CMOS, " Electronics Letters, vol. 50, no. 17, pp. 1229–1231, Aug. 2014.
[13] Quan Pan, Zhengxiong Hou, Yu Li, Andrew W. Poon, and C. Patrick Yue, “A 0.5-V P-well/deep N-well photodetector in 65-nm CMOS for monolithic 850-nm optical receivers,” IEEE Photon. Technol. Lett., vol. 26, no. 12, pp. 1184-1187, Jun. 2014.
[14] Bernhard Steindl, et al., "Linear Mode Avalanche Photodiode With 1-GHz Bandwidth Fabricated in 0.35-μm CMOS, " IEEE Photon. Technol. Lett., vol. 26, no. 15, pp. 1511 – 1514, Aug. 2014.
[15] Paul Brandl, Stefan Schidl and Horst Zimmermann, "PIN Photodiode Optoelectronic Integrated Receiver Used for 3-Gb/s Free-Space Optical Communication," IEEE Journal of Selected Topics in Quantum Electronics, vol. 20, no. 6, Nov.-Dec. 2014.
[16] W.-K. Huang, Y.-C. Liu and Y.-M. Hsin, “Bandwidth enhancement in Si photodiode by eliminating slow diffusion photocarriers,” Electron. Lett., vol. 44, no. 1, pp. 52-53, Jan. 2008.
[17] Fang-Ping Chou, Guan-Yu Chen, Ching-Wen Wang, Zi-Ying Li, Yu-Chang Liu, Wei-Kuo Huang, and Yue-Ming Hsin, “Design and analysis for a 850 nm Si photodiode using the body bias technique for low-voltage operation,” J. of Lightwave Technol., vol. 31, no. 6, pp. 936-941, Mar. 2013.
[18] Yu-Chen Hsieh, Fang-Ping Chou, Ching-Wen Wang, Chih-Ai Huang, and Yue-Ming Hsin, “850-nm edge-illuminated Si photodiodes fabricated with CMOS-MEMS technology,” IEEE Photon. Technol. Lett., vol. 25, no. 20, pp. 2018-2021, Oct. 2013.
[19] Filip Tavernier, and Michel S. J. Steyaert, “High-speed optical receivers with integrated photodiode in 130 nm CMOS,” IEEE J. of Solid-State Circuits, vol. 44, no. 10, pp. 2856-2867, Oct. 2009.
[20] Kasap, S. O., Optoelectronics and photonics: principles and practices, Prentice Hall, 2001.
[21] Gerd Keiser, Optical Fiber Communications, McGRAW Hill, pp.536-555, 2000.
[22] S. M. Sze, Physics of Semiconductor Devices, 3rd ed. John Wiley & Sons Inc, 2007.
[23] S. Radovanovic, “High-Speed Photodiodes in Standard CMOS Technology,” Print Partners Ipskamp, 2004.
[24] H. Zimmermann, Integrated Silicon Optoelectronics. New York: Springer, 2000.
[25] Wei-Jean Liu, Oscal T-C. Chen, Li-Kuo Dai, Ping-Kuo Weng, Kaung-Hsin Huang and Far- Wen Jih, “A CMOS Photodiode Model,” IEEE International Workshop on Behavioral Modeling and Simulation, 2001.
[26] G. P. Agrawal, Fiber-Optical Communication Systems. John Wiley & Sons Inc, 2002.
[27] S. Radovanovic, A. J. Annema and B. Nauta., “Physical and electrical bandwidths of integrated photodiodes in standard CMOS technology,” IEEE Conf. on Electron Devices and Solid-State Circuits, pp. 95-98, Dec. 2003.
[28] S. Radovanovic´, Anne-Johan Annema, and Bram Nauta, "A 3-Gb/s optical detector in standard CMOS for 850-nm optical communication," IEEE J. of Solid-State Circuits, vol. 40, no. 8, pp. 1706-1717, Aug. 2005.
[29] New Focus, Inc., “Insights into High-Speed Detectors and High-Frequency Techniques.” Application Notes, no.1
[30] F.-P. Chou, C.-W. Wang, Z.-Y. Li, Y.-C. Hsieh, and Y.-M. Hsin, “Effect of deep N-well bias in an 850-nm Si photodiode fabricated using the CMOS process,” IEEE Photon. Technol. Lett., vol. 25, no. 7, pp. 659-662, Apr. 2013.
[31] Behrooz Nakhkoob, Sagar Ray, and Mona M. Hella, “High speed photodiodes in standard nanometer scale CMOS technology: a comparative study,” Opt. Express, vol. 20, no. 10, pp. 11256-11270, May 2012.
[32] S. B. Alexander, Optical Communication Receiver Design, SPIE Optical Engineering Press, 1997.
[33] R. Fujimoto, et al., “A 7-GHz 1.8-dB NF CMOS low-noise amplifier,” IEEE J. of Solid-State Circuits, vol. 37, no.7, pp. 852-856, Jul. 2002
[34] Charles Richard, Thierry Courcier, Patrick Pittet, Stephane Martel, Luc Ouellet, Guo-Neng Lu, Vincent Aimez, and Paul G. Charette, "CMOS buried Quad p-n junction photodetector for multi-wavelength analysis," OPTICS EXPRESS, vol. 20, no. 3, Jan. 2012
[35] A. Rochas, G. Ribordy, B. Furrer, P. Besse, and R. Popovic, “Lownoise silicon avalanche photodiodes fabricated in conventional CMOS technologies,” IEEE Trans. Electron Devices, vol. 49, no. 3, pp. 387–394, Mar. 2002.