| 研究生: |
邱祥恩 Hsiang-En Chiu |
|---|---|
| 論文名稱: |
金矽及金錫晶圓鍵合技術應用在發光二極體 Study of Au-Si and Au-Sn Wafer Bonding Technology for Thin-GaN LED |
| 指導教授: |
劉正毓
Cheng-Yi Liu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 49 |
| 中文關鍵詞: | 晶圓鍵合 、金矽反應 |
| 外文關鍵詞: | wafer bonding, AuSi reaction |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
在逐漸講求環保的現代,人類開始追求節省能源與無污染的照明設備,發光二極體(LED)具備以上的優點並且即將取代過去傳統的燈泡,但是發光二極體(LED)的發光效率是否良好,其中一個影響因素就是熱,熱會使發光二極體的效率降低,所以散熱的好壞會影發光二極體(LED)的發光效率,因此如何將發光二極體(LED)貼附在散熱良好的基板上,以增加其散熱的效率,是目前我們積極研究的方向。
目前應用在晶圓鍵合(Wafer bonding)上的金屬材料眾多,例如:金、錫、矽、銅等,本研究的重點著重於金與矽在共金點形成金矽合金,利用此特性應用於發光二極體(LED)與矽基材的貼合。金矽介面是採用(100)面與(111)面的矽晶圓,在其表面蒸鍍一層金層並且在不同溫度與時間下加熱,我們發現金與矽介面之間的反應會與矽晶圓晶體的排列方向有重要關聯性。
Abstract:
Recently, people are seeking the lighting source which consumes less energy and has no pollution. Light Emitting Diode (LED) has the advantages over the traditional lamps in the future. One issue of the high-power of LED is the heating generation in the active layer. The heating generation will decay the lighting performance. Therefore, the thermal dissipation controls the development of HB LED and the goal of our investigation is to increase the efficiency of the thermal dissipation.
There are many materials used for wafer bonding presently, for example, Au, Sn, Si, and Cu and so on. In this study, we focus on the mechanism of Au-Si formation and we use the Au-Si alloy to bond the GaN LED wafers with Si substrates. There were two kinds of Si wafers (100) and (111) used for Au-Si wafer bonding. We deposited the Au layer on the wafers and annealed in the various temperatures and times. We found that the crystallography of Si wafers would affect the Au-Si inter-reaction.
1. W. S. Wong, N. W. Cheung, M. Kneissl, D. P. Bour, P. Mei, L.T. Romano, and N. M. Johnson, Appl. Phys. Lett. 77, 2822 (2000).
2. Z. S. Luo, Y. Cho, V. Loryuenyong, T. Sands, N. W. Cheung, and M. C. Yoo, Photonic Technology Letters, Vol. 14, No. 10, 1041 (2002).
3. Jin-Wook Jang, Scott Hayes, Jong-Kai Lin, and Darrel R. Frear, J. Appl. Phys., Vol. 95, No.11, 6077 (2004).
4. W. S. Wong, A. B. Wengrow, Y. Cho, A. Salleo, N. J. Quitoriano, N. W. Cheung, and T. Sands, J. Electron. Mater. 28, 1409 (1999).
5. B. J. Dalgleish, K. Nakashima, M. R. Locatelli, A. P. Tomsia, and A. M. Glaeser, Ceram. Int. 23, 313 (1997).
6. M. K. Kelly, O. Ambacher, R. Dimitrov, R. Handschuh, and M. Stutzmann, Phys. Status Solidi A 159, R3 (1997).
7. W. S. Wong, T. Sands, and N. W. Cheung, Appl. Phys. Lett. 72, 599 (1998).
8. W. S. Wong, J. Krüger, Y. Cho, B. P. Linder, E. R. Weber, N. W. Cheung, and T. Sands, Proceedings of the Symposium on LED for Optoelectronic Applications and the 28th State of the Art Programs on Compound Semiconductors, 1998, Vol. 98-2, p. 377.
9. B. Ressel, K. C. Prince, and S. Heun, Y. Homma, J. Appl. Phys., Vol. 93, No.7, 3886 (2003).
10. H. F. Okorn-Schmidt, C. D’Emic, and R. Murphy, Solid State Phenom. 76-77, 161 (2001).
11. David A. Porter, and Kenneth E. Easterling, Phase Transformations in Metals and Alloys, p.113-116.
12. C. C. Griffioen, J. H. Evans, P. C. de Jong, and A. van Veen, Ncul. Instrum. Methods Phys. Res., Sect. B 27, 417 (1987); see also S. M. Mayer, C. M. Foellstaedt, H. J. Stein, and W. R. Wampler, Phys. Rev. B 45, 3914 (1992).
13. J. C. Heyraud and J. J. Metois, Surf. Sci. 128, 334 (1983).
14. Y. –W. Mo, R. Kariotis, B. S. Swartzenruber, M. B. Webb, and M. G. Lagally, J. Vac. Sci. Technol. A 8, 201 (1990).
15. R. J. Jaccodine, J. Electrochem. Soc. 110, 542 (1936);see also Comment by G. A. Wolff, J. Electrochem. Soc. 110, 1293 (1963).
16. J. H. Wilson, J. D. Todd, and A. P. Sutton, J. Phys. Condens. Matter 2, 10259 (1990); 3, 1971(E) (1991).
17. G. H. Gilmer and A. F. Bakker, Mater. Res. Soc. Symp. Proc. 209, 135 (1991).
18. King-Ning Tu, James W. Mayer, and Leonard C. Feldman, Electronic Thin Film Science, p.84-88.
19. Marc Madou, Fundamentals of Microfabrication, p.148-149.
20. William D. Callister, Jr., Materials Science and Engineering An Introduction, p.47-48.
21. King-Ning Tu, James W. Mayer, and Leonard C. Feldman, Electronic Thin Film Science, p.105-109.